Cargando…
Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem
In this paper, a dynamic sub-route-based self-adaptive beam search Q-learning (DSRABSQL) algorithm is proposed that provides a reinforcement learning (RL) framework combined with local search to solve the traveling salesman problem (TSP). DSRABSQL builds upon the Q-learning (QL) algorithm. Consideri...
Autores principales: | Zhang, Jin, Liu, Qing, Han, XiaoHang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030033/ https://www.ncbi.nlm.nih.gov/pubmed/36943840 http://dx.doi.org/10.1371/journal.pone.0283207 |
Ejemplares similares
-
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
por: Sung, Jinmo, et al.
Publicado: (2014) -
Solving the clustered traveling salesman problem via traveling salesman problem methods
por: Lu, Yongliang, et al.
Publicado: (2022) -
Solving Traveling Salesman Problems Based on Artificial Cooperative Search Algorithm
por: Liu, Guangjun, et al.
Publicado: (2022) -
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
por: Zhan, Shi-hua, et al.
Publicado: (2016) -
The traveling salesman problem and its variations
por: Gutin, Gregory, et al.
Publicado: (2007)