Cargando…
Benchmarking integration of single-cell differential expression
Integration of single-cell RNA sequencing data between different samples has been a major challenge for analyzing cell populations. However, strategies to integrate differential expression analysis of single-cell data remain underinvestigated. Here, we benchmark 46 workflows for differential express...
Autores principales: | Nguyen, Hai C. T., Baik, Bukyung, Yoon, Sora, Park, Taesung, Nam, Dougu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030080/ https://www.ncbi.nlm.nih.gov/pubmed/36944632 http://dx.doi.org/10.1038/s41467-023-37126-3 |
Ejemplares similares
-
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
por: Baik, Bukyung, et al.
Publicado: (2020) -
Powerful p-value combination methods to detect incomplete association
por: Yoon, Sora, et al.
Publicado: (2021) -
Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2
por: Yoon, Sora, et al.
Publicado: (2018) -
GScluster: network-weighted gene-set clustering analysis
por: Yoon, Sora, et al.
Publicado: (2019) -
Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data
por: Yoon, Sora, et al.
Publicado: (2017)