Cargando…

El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2

OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Inten...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Castro, Alejandro, Modesto i Alapont, Vicent, Cuenca Fito, Elena, Peñasco, Yhivian, Escudero Acha, Patricia, Huertas Martín, Carmen, Rodríguez Borregán, Juan Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier España, S.L.U. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030329/
https://www.ncbi.nlm.nih.gov/pubmed/37359241
http://dx.doi.org/10.1016/j.medin.2023.03.005
_version_ 1784910340420534272
author González-Castro, Alejandro
Modesto i Alapont, Vicent
Cuenca Fito, Elena
Peñasco, Yhivian
Escudero Acha, Patricia
Huertas Martín, Carmen
Rodríguez Borregán, Juan Carlos
author_facet González-Castro, Alejandro
Modesto i Alapont, Vicent
Cuenca Fito, Elena
Peñasco, Yhivian
Escudero Acha, Patricia
Huertas Martín, Carmen
Rodríguez Borregán, Juan Carlos
author_sort González-Castro, Alejandro
collection PubMed
description OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Intensive care unit of a third level hospital in Spain. PATIENTS: Patients admitted for SARS-CoV-2 infection with admission to the ICU between March 2020 and March 2022. INTERVENTIONS: Bayesian analysis with the beta binomial model. MAIN VARIABLES OF INTEREST: Bayes factor, mechanical power. RESULTS: A total of 253 patients were analyzed. Baseline respiratory rate (BF(10): 3.83 × 10(6)), peak pressure value (BF(10): 3.72 × 10(13)) and neumothorax (BF(10): 17,663) were the values most likely to be different between the two groups of patients compared. In the group of patients with MP < 17 J/min, a BF(10) of 12.71 and a BF(01) of 0.07 were established with an 95%CI of 0.27-0.58. For the group of patients with MP ≥ 17 J/min the BF(10) was 36,100 and the BF(01) of 2.77e-05 with an 95%CI of 0.42-0.72. CONCLUSIONS: A MP ≥ 17 J/min value is associated with extreme evidence with 28-day mortality in patients requiring MV due to respiratory failure secondary to SARS-CoV-2 disease.
format Online
Article
Text
id pubmed-10030329
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Published by Elsevier España, S.L.U.
record_format MEDLINE/PubMed
spelling pubmed-100303292023-03-22 El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 González-Castro, Alejandro Modesto i Alapont, Vicent Cuenca Fito, Elena Peñasco, Yhivian Escudero Acha, Patricia Huertas Martín, Carmen Rodríguez Borregán, Juan Carlos Med Intensiva Original OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Intensive care unit of a third level hospital in Spain. PATIENTS: Patients admitted for SARS-CoV-2 infection with admission to the ICU between March 2020 and March 2022. INTERVENTIONS: Bayesian analysis with the beta binomial model. MAIN VARIABLES OF INTEREST: Bayes factor, mechanical power. RESULTS: A total of 253 patients were analyzed. Baseline respiratory rate (BF(10): 3.83 × 10(6)), peak pressure value (BF(10): 3.72 × 10(13)) and neumothorax (BF(10): 17,663) were the values most likely to be different between the two groups of patients compared. In the group of patients with MP < 17 J/min, a BF(10) of 12.71 and a BF(01) of 0.07 were established with an 95%CI of 0.27-0.58. For the group of patients with MP ≥ 17 J/min the BF(10) was 36,100 and the BF(01) of 2.77e-05 with an 95%CI of 0.42-0.72. CONCLUSIONS: A MP ≥ 17 J/min value is associated with extreme evidence with 28-day mortality in patients requiring MV due to respiratory failure secondary to SARS-CoV-2 disease. Published by Elsevier España, S.L.U. 2023-03-22 /pmc/articles/PMC10030329/ /pubmed/37359241 http://dx.doi.org/10.1016/j.medin.2023.03.005 Text en © 2023 Published by Elsevier España, S.L.U. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Original
González-Castro, Alejandro
Modesto i Alapont, Vicent
Cuenca Fito, Elena
Peñasco, Yhivian
Escudero Acha, Patricia
Huertas Martín, Carmen
Rodríguez Borregán, Juan Carlos
El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title_full El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title_fullStr El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title_full_unstemmed El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title_short El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
title_sort el método del factor de bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por sars-cov-2
topic Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030329/
https://www.ncbi.nlm.nih.gov/pubmed/37359241
http://dx.doi.org/10.1016/j.medin.2023.03.005
work_keys_str_mv AT gonzalezcastroalejandro elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT modestoialapontvicent elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT cuencafitoelena elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT penascoyhivian elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT escuderoachapatricia elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT huertasmartincarmen elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2
AT rodriguezborreganjuancarlos elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2