Cargando…
El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2
OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Inten...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier España, S.L.U.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030329/ https://www.ncbi.nlm.nih.gov/pubmed/37359241 http://dx.doi.org/10.1016/j.medin.2023.03.005 |
_version_ | 1784910340420534272 |
---|---|
author | González-Castro, Alejandro Modesto i Alapont, Vicent Cuenca Fito, Elena Peñasco, Yhivian Escudero Acha, Patricia Huertas Martín, Carmen Rodríguez Borregán, Juan Carlos |
author_facet | González-Castro, Alejandro Modesto i Alapont, Vicent Cuenca Fito, Elena Peñasco, Yhivian Escudero Acha, Patricia Huertas Martín, Carmen Rodríguez Borregán, Juan Carlos |
author_sort | González-Castro, Alejandro |
collection | PubMed |
description | OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Intensive care unit of a third level hospital in Spain. PATIENTS: Patients admitted for SARS-CoV-2 infection with admission to the ICU between March 2020 and March 2022. INTERVENTIONS: Bayesian analysis with the beta binomial model. MAIN VARIABLES OF INTEREST: Bayes factor, mechanical power. RESULTS: A total of 253 patients were analyzed. Baseline respiratory rate (BF(10): 3.83 × 10(6)), peak pressure value (BF(10): 3.72 × 10(13)) and neumothorax (BF(10): 17,663) were the values most likely to be different between the two groups of patients compared. In the group of patients with MP < 17 J/min, a BF(10) of 12.71 and a BF(01) of 0.07 were established with an 95%CI of 0.27-0.58. For the group of patients with MP ≥ 17 J/min the BF(10) was 36,100 and the BF(01) of 2.77e-05 with an 95%CI of 0.42-0.72. CONCLUSIONS: A MP ≥ 17 J/min value is associated with extreme evidence with 28-day mortality in patients requiring MV due to respiratory failure secondary to SARS-CoV-2 disease. |
format | Online Article Text |
id | pubmed-10030329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Published by Elsevier España, S.L.U. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100303292023-03-22 El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 González-Castro, Alejandro Modesto i Alapont, Vicent Cuenca Fito, Elena Peñasco, Yhivian Escudero Acha, Patricia Huertas Martín, Carmen Rodríguez Borregán, Juan Carlos Med Intensiva Original OBJECTIVE: To specify the degree of probative force of the statistical hypotheses in relation to mortality at 28 days and the threshold value of 17 J/min mechanical power (MP) in patients with respiratory failure secondary to SARS-CoV-2. DESIGN: Cohort study, longitudinal, analytical. SETTING: Intensive care unit of a third level hospital in Spain. PATIENTS: Patients admitted for SARS-CoV-2 infection with admission to the ICU between March 2020 and March 2022. INTERVENTIONS: Bayesian analysis with the beta binomial model. MAIN VARIABLES OF INTEREST: Bayes factor, mechanical power. RESULTS: A total of 253 patients were analyzed. Baseline respiratory rate (BF(10): 3.83 × 10(6)), peak pressure value (BF(10): 3.72 × 10(13)) and neumothorax (BF(10): 17,663) were the values most likely to be different between the two groups of patients compared. In the group of patients with MP < 17 J/min, a BF(10) of 12.71 and a BF(01) of 0.07 were established with an 95%CI of 0.27-0.58. For the group of patients with MP ≥ 17 J/min the BF(10) was 36,100 and the BF(01) of 2.77e-05 with an 95%CI of 0.42-0.72. CONCLUSIONS: A MP ≥ 17 J/min value is associated with extreme evidence with 28-day mortality in patients requiring MV due to respiratory failure secondary to SARS-CoV-2 disease. Published by Elsevier España, S.L.U. 2023-03-22 /pmc/articles/PMC10030329/ /pubmed/37359241 http://dx.doi.org/10.1016/j.medin.2023.03.005 Text en © 2023 Published by Elsevier España, S.L.U. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Original González-Castro, Alejandro Modesto i Alapont, Vicent Cuenca Fito, Elena Peñasco, Yhivian Escudero Acha, Patricia Huertas Martín, Carmen Rodríguez Borregán, Juan Carlos El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title | El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title_full | El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title_fullStr | El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title_full_unstemmed | El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title_short | El método del factor de Bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por SARS-CoV-2 |
title_sort | el método del factor de bayes en el análisis de la energía mecánica en pacientes con insuficiencia respiratoria grave por sars-cov-2 |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030329/ https://www.ncbi.nlm.nih.gov/pubmed/37359241 http://dx.doi.org/10.1016/j.medin.2023.03.005 |
work_keys_str_mv | AT gonzalezcastroalejandro elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT modestoialapontvicent elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT cuencafitoelena elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT penascoyhivian elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT escuderoachapatricia elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT huertasmartincarmen elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 AT rodriguezborreganjuancarlos elmetododelfactordebayesenelanalisisdelaenergiamecanicaenpacientesconinsuficienciarespiratoriagraveporsarscov2 |