Cargando…
Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice
In hybrid plants, heterosis often produces large, vigorous plants with high yields; however, hybrid seeds are generated by costly and laborious crosses of inbred parents. Apomixis, in which a plant produces a clone of itself via asexual reproduction through seeds, may produce another revolution in p...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030361/ https://www.ncbi.nlm.nih.gov/pubmed/36325606 http://dx.doi.org/10.1016/j.xplc.2022.100470 |
_version_ | 1784910353708089344 |
---|---|
author | Liu, Chaolei He, Zexue Zhang, Yan Hu, Fengyue Li, Mengqi Liu, Qing Huang, Yong Wang, Jian Zhang, Wenli Wang, Chun Wang, Kejian |
author_facet | Liu, Chaolei He, Zexue Zhang, Yan Hu, Fengyue Li, Mengqi Liu, Qing Huang, Yong Wang, Jian Zhang, Wenli Wang, Chun Wang, Kejian |
author_sort | Liu, Chaolei |
collection | PubMed |
description | In hybrid plants, heterosis often produces large, vigorous plants with high yields; however, hybrid seeds are generated by costly and laborious crosses of inbred parents. Apomixis, in which a plant produces a clone of itself via asexual reproduction through seeds, may produce another revolution in plant biology. Recently, synthetic apomixis enabled clonal reproduction of F(1) hybrids through seeds in rice (Oryza sativa), but the inheritance of the synthetic apomixis trait and superior heterotic phenotypes across generations remained unclear. Here, we propagated clonal plants to the T(4) generation and investigated their genetic and molecular stability at each generation. By analyzing agronomic traits, as well as the genome, methylome, transcriptome, and allele-specific transcriptome, we showed that the descendant clonal plants remained stable. Unexpectedly, in addition to normal clonal seeds, the plants also produced a few aneuploids that had eliminated large genomic segments in each generation. Despite the identification of rare aneuploids, the observation that the synthetic apomixis trait is stably transmitted through multiple generations helps confirm the feasibility of using apomixis in the future. |
format | Online Article Text |
id | pubmed-10030361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100303612023-03-23 Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice Liu, Chaolei He, Zexue Zhang, Yan Hu, Fengyue Li, Mengqi Liu, Qing Huang, Yong Wang, Jian Zhang, Wenli Wang, Chun Wang, Kejian Plant Commun Research Article In hybrid plants, heterosis often produces large, vigorous plants with high yields; however, hybrid seeds are generated by costly and laborious crosses of inbred parents. Apomixis, in which a plant produces a clone of itself via asexual reproduction through seeds, may produce another revolution in plant biology. Recently, synthetic apomixis enabled clonal reproduction of F(1) hybrids through seeds in rice (Oryza sativa), but the inheritance of the synthetic apomixis trait and superior heterotic phenotypes across generations remained unclear. Here, we propagated clonal plants to the T(4) generation and investigated their genetic and molecular stability at each generation. By analyzing agronomic traits, as well as the genome, methylome, transcriptome, and allele-specific transcriptome, we showed that the descendant clonal plants remained stable. Unexpectedly, in addition to normal clonal seeds, the plants also produced a few aneuploids that had eliminated large genomic segments in each generation. Despite the identification of rare aneuploids, the observation that the synthetic apomixis trait is stably transmitted through multiple generations helps confirm the feasibility of using apomixis in the future. Elsevier 2022-11-02 /pmc/articles/PMC10030361/ /pubmed/36325606 http://dx.doi.org/10.1016/j.xplc.2022.100470 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Liu, Chaolei He, Zexue Zhang, Yan Hu, Fengyue Li, Mengqi Liu, Qing Huang, Yong Wang, Jian Zhang, Wenli Wang, Chun Wang, Kejian Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title | Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title_full | Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title_fullStr | Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title_full_unstemmed | Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title_short | Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
title_sort | synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030361/ https://www.ncbi.nlm.nih.gov/pubmed/36325606 http://dx.doi.org/10.1016/j.xplc.2022.100470 |
work_keys_str_mv | AT liuchaolei syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT hezexue syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT zhangyan syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT hufengyue syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT limengqi syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT liuqing syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT huangyong syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT wangjian syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT zhangwenli syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT wangchun syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice AT wangkejian syntheticapomixisenablesstabletransgenerationaltransmissionofheteroticphenotypesinhybridrice |