Cargando…
High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron
Spiking neural networks (SNNs) have attracted intensive attention due to the efficient event-driven computing paradigm. Among SNN training methods, the ANN-to-SNN conversion is usually regarded to achieve state-of-the-art recognition accuracies. However, many existing ANN-to-SNN techniques impose le...
Autores principales: | Gao, Haoran, He, Junxian, Wang, Haibing, Wang, Tengxiao, Zhong, Zhengqing, Yu, Jianyi, Wang, Ying, Tian, Min, Shi, Cong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030499/ https://www.ncbi.nlm.nih.gov/pubmed/36968504 http://dx.doi.org/10.3389/fnins.2023.1141701 |
Ejemplares similares
-
Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
por: Kornijcuk, Vladimir, et al.
Publicado: (2016) -
Molecular Toxicity Virtual Screening Applying a Quantized Computational SNN-Based Framework
por: Nascimben, Mauro, et al.
Publicado: (2023) -
Quantized visual awareness
por: Escobar, W. A.
Publicado: (2013) -
Temporal Limitations of the Standard Leaky Integrate and Fire Model
por: Merzon, Liya, et al.
Publicado: (2019) -
Rate Dynamics of Leaky Integrate-and-Fire Neurons with Strong Synapses
por: Nordlie, Eilen, et al.
Publicado: (2010)