Cargando…
Piezoelectric fibers for flexible and wearable electronics
Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030726/ https://www.ncbi.nlm.nih.gov/pubmed/36944822 http://dx.doi.org/10.1007/s12200-023-00058-3 |
Sumario: | Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field. GRAPHICAL ABSTRACT: [Image: see text] |
---|