Cargando…
An in-silico framework for modeling optimal control of neural systems
INTRODUCTION: Brain-machine interfaces have reached an unprecedented capacity to measure and drive activity in the brain, allowing restoration of impaired sensory, cognitive or motor function. Classical control theory is pushed to its limit when aiming to design control laws that are suitable for la...
Autores principales: | Rueckauer, Bodo, van Gerven, Marcel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030734/ https://www.ncbi.nlm.nih.gov/pubmed/36968496 http://dx.doi.org/10.3389/fnins.2023.1141884 |
Ejemplares similares
-
Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor
por: Rueckauer, Bodo, et al.
Publicado: (2016) -
Editorial: Artificial Neural Networks as Models of Neural Information Processing
por: van Gerven, Marcel, et al.
Publicado: (2017) -
BCNNM: A Framework for in silico Neural Tissue Development Modeling
por: Bozhko, Dmitrii V., et al.
Publicado: (2021) -
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks
por: Güçlü, Umut, et al.
Publicado: (2017) -
A parameter-optimization framework for neural decoding systems
por: Xie, Jing, et al.
Publicado: (2023)