Cargando…
Establishing a prediction model of severe acute mountain sickness using machine learning of support vector machine recursive feature elimination
Severe acute mountain sickness (sAMS) can be life-threatening, but little is known about its genetic basis. The study was aimed to explore the genetic susceptibility of sAMS for the purpose of prediction, using microarray data from 112 peripheral blood mononuclear cell (PBMC) samples of 21 subjects,...
Autores principales: | Yang, Min, Wu, Yang, Yang, Xing-biao, Liu, Tao, Zhang, Ya, Zhuo, Yue, Luo, Yong, Zhang, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030784/ https://www.ncbi.nlm.nih.gov/pubmed/36944699 http://dx.doi.org/10.1038/s41598-023-31797-0 |
Ejemplares similares
-
Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images
por: Lu, Xiaobing, et al.
Publicado: (2016) -
Identification of risk genes associated with myocardial infarction based on the recursive feature elimination algorithm and support vector machine classifier
por: Yang, Xiaoqiang
Publicado: (2018) -
Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images: Erratum
Publicado: (2016) -
Identification of miRNA Signature Associated With Erectile Dysfunction in Type 2 Diabetes Mellitus by Support Vector Machine-Recursive Feature Elimination
por: Xu, Haibo, et al.
Publicado: (2021) -
Recursive Cluster Elimination Based Support Vector Machine for Disease State Prediction Using Resting State Functional and Effective Brain Connectivity
por: Deshpande, Gopikrishna, et al.
Publicado: (2010)