Cargando…
Predicting outcomes of continuous renal replacement therapy using body composition monitoring: a deep-learning approach
Fluid balance is a critical prognostic factor for patients with severe acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT). This study evaluated whether repeated fluid balance monitoring could improve prognosis in this clinical population. This was a multicenter retrospec...
Autores principales: | Yoo, Kyung Don, Noh, Junhyug, Bae, Wonho, An, Jung Nam, Oh, Hyung Jung, Rhee, Harin, Seong, Eun Young, Baek, Seon Ha, Ahn, Shin Young, Cho, Jang-Hee, Kim, Dong Ki, Ryu, Dong-Ryeol, Kim, Sejoong, Lim, Chun Soo, Lee, Jung Pyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030803/ https://www.ncbi.nlm.nih.gov/pubmed/36944678 http://dx.doi.org/10.1038/s41598-023-30074-4 |
Ejemplares similares
-
VolumE maNagement Under body composition monitoring in critically ill patientS on CRRT: study protocol for a randomized controlled trial (VENUS trial)
por: Oh, Hyung Jung, et al.
Publicado: (2018) -
Mortality predictors in critically ill patients with acute kidney injury requiring continuous renal replacement therapy
por: Medina-Liabres, Kristianne Rachel P., et al.
Publicado: (2021) -
GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study
por: Lim, Jeong-Hoon, et al.
Publicado: (2021) -
Evaluating a shared decision-making intervention regarding dialysis modality: development and validation of self-assessment items for patients with chronic kidney disease
por: Kim, Soojin, et al.
Publicado: (2022) -
A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study
por: Yoo, Kyung Don, et al.
Publicado: (2017)