Cargando…
A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing
Neurobiological systems continually interact with the surrounding environment to refine their behaviour toward the best possible reward. Achieving such learning by experience is one of the main challenges of artificial intelligence, but currently it is hindered by the lack of hardware capable of pla...
Autores principales: | Bianchi, S., Muñoz-Martin, I., Covi, E., Bricalli, A., Piccolboni, G., Regev, A., Molas, G., Nodin, J. F., Andrieu, F., Ielmini, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030830/ https://www.ncbi.nlm.nih.gov/pubmed/36944647 http://dx.doi.org/10.1038/s41467-023-37097-5 |
Ejemplares similares
-
Dissecting the neurocomputational bases of patch-switching
por: Zacharopoulos, George, et al.
Publicado: (2023) -
Neurocomputational mechanisms of confidence in self and others
por: Bang, Dan, et al.
Publicado: (2022) -
Neurocomputing: foundations of research
por: Rosenfeld, Edward, et al.
Publicado: (1988) -
Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices
por: Wang, Wei, et al.
Publicado: (2019) -
A high throughput generative vector autoregression model for stochastic synapses
por: Hennen, Tyler, et al.
Publicado: (2022)