Cargando…

Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer

Non-small Cell Lung Cancer (NSCLC) is a heterogeneous disease with a poor prognosis. Identifying novel subtypes in cancer can help classify patients with similar molecular and clinical phenotypes. This work proposes an end-to-end pipeline for subgroup identification in NSCLC. Here, we used a machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Khadirnaikar, Seema, Shukla, Sudhanshu, Prasanna, S. R. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030850/
https://www.ncbi.nlm.nih.gov/pubmed/36944673
http://dx.doi.org/10.1038/s41598-023-31426-w
Descripción
Sumario:Non-small Cell Lung Cancer (NSCLC) is a heterogeneous disease with a poor prognosis. Identifying novel subtypes in cancer can help classify patients with similar molecular and clinical phenotypes. This work proposes an end-to-end pipeline for subgroup identification in NSCLC. Here, we used a machine learning (ML) based approach to compress the multi-omics NSCLC data to a lower dimensional space. This data is subjected to consensus K-means clustering to identify the five novel clusters (C1–C5). Survival analysis of the resulting clusters revealed a significant difference in the overall survival of clusters (p-value: 0.019). Each cluster was then molecularly characterized to identify specific molecular characteristics. We found that cluster C3 showed minimal genetic aberration with a high prognosis. Next, classification models were developed using data from each omic level to predict the subgroup of unseen patients. Decision‑level fused classification models were then built using these classifiers, which were used to classify unseen patients into five novel clusters. We also showed that the multi-omics-based classification model outperformed single-omic-based models, and the combination of classifiers proved to be a more accurate prediction model than the individual classifiers. In summary, we have used ML models to develop a classification method and identified five novel NSCLC clusters with different genetic and clinical characteristics.