Cargando…
Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer
Non-small Cell Lung Cancer (NSCLC) is a heterogeneous disease with a poor prognosis. Identifying novel subtypes in cancer can help classify patients with similar molecular and clinical phenotypes. This work proposes an end-to-end pipeline for subgroup identification in NSCLC. Here, we used a machine...
Autores principales: | Khadirnaikar, Seema, Shukla, Sudhanshu, Prasanna, S. R. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030850/ https://www.ncbi.nlm.nih.gov/pubmed/36944673 http://dx.doi.org/10.1038/s41598-023-31426-w |
Ejemplares similares
-
Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods
por: Khadirnaikar, Seema, et al.
Publicado: (2023) -
A Greedy Algorithm-Based Stem Cell LncRNA Signature Identifies a Novel Subgroup of Lung Adenocarcinoma Patients With Poor Prognosis
por: Khadirnaikar, Seema, et al.
Publicado: (2020) -
An epithelial-mesenchymal plasticity signature identifies two novel LncRNAs with the opposite regulation
por: Kumar, Pranjal, et al.
Publicado: (2022) -
Identification of the expressome by machine learning on omics data
por: Sartor, Ryan C., et al.
Publicado: (2019) -
Machine learning for multi-omics data integration in cancer
por: Cai, Zhaoxiang, et al.
Publicado: (2022)