Cargando…
Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step tow...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030964/ https://www.ncbi.nlm.nih.gov/pubmed/36940949 http://dx.doi.org/10.1136/bmjopen-2022-071043 |
_version_ | 1784910494151213056 |
---|---|
author | Nguyen, Quang Woof, William Kabiri, Nathaniel Sen, Sagnik Daich Varela, Malena Cabral De Guimaraes, Thales Antonio Shah, Mital Sumodhee, Dayyanah Moghul, Ismail Al-Khuzaei, Saoud Liu, Yichen Hollyhead, Catherine Tailor, Bhavna Lobo, Loy Veal, Carl Archer, Stephen Furman, Jennifer Arno, Gavin Gomes, Manuel Fujinami, Kaoru Madhusudhan, Savita Mahroo, Omar A Webster, Andrew R Balaskas, Konstantinos Downes, Susan M Michaelides, Michel Pontikos, Nikolas |
author_facet | Nguyen, Quang Woof, William Kabiri, Nathaniel Sen, Sagnik Daich Varela, Malena Cabral De Guimaraes, Thales Antonio Shah, Mital Sumodhee, Dayyanah Moghul, Ismail Al-Khuzaei, Saoud Liu, Yichen Hollyhead, Catherine Tailor, Bhavna Lobo, Loy Veal, Carl Archer, Stephen Furman, Jennifer Arno, Gavin Gomes, Manuel Fujinami, Kaoru Madhusudhan, Savita Mahroo, Omar A Webster, Andrew R Balaskas, Konstantinos Downes, Susan M Michaelides, Michel Pontikos, Nikolas |
author_sort | Nguyen, Quang |
collection | PubMed |
description | INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step towards effective care and patient management. However, genetic diagnosis is currently slow, expensive and not widely accessible. The aim of the current project is to address the evidence gap in IRD diagnosis with an AI algorithm, Eye2Gene, to accelerate and democratise the IRD diagnosis service. METHODS AND ANALYSIS: The data-only retrospective cohort study involves a target sample size of 10 000 participants, which has been derived based on the number of participants with IRD at three leading UK eye hospitals: Moorfields Eye Hospital (MEH), Oxford University Hospital (OUH) and Liverpool University Hospital (LUH), as well as a Japanese hospital, the Tokyo Medical Centre (TMC). Eye2Gene aims to predict causative genes from retinal images of patients with a diagnosis of IRD. For this purpose, 36 most common causative IRD genes have been selected to develop a training dataset for the software to have enough examples for training and validation for detection of each gene. The Eye2Gene algorithm is composed of multiple deep convolutional neural networks, which will be trained on MEH IRD datasets, and externally validated on OUH, LUH and TMC. ETHICS AND DISSEMINATION: This research was approved by the IRB and the UK Health Research Authority (Research Ethics Committee reference 22/WA/0049) ‘Eye2Gene: accelerating the diagnosis of IRDs’ Integrated Research Application System (IRAS) project ID: 242050. All research adhered to the tenets of the Declaration of Helsinki. Findings will be reported in an open-access format. |
format | Online Article Text |
id | pubmed-10030964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-100309642023-03-23 Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) Nguyen, Quang Woof, William Kabiri, Nathaniel Sen, Sagnik Daich Varela, Malena Cabral De Guimaraes, Thales Antonio Shah, Mital Sumodhee, Dayyanah Moghul, Ismail Al-Khuzaei, Saoud Liu, Yichen Hollyhead, Catherine Tailor, Bhavna Lobo, Loy Veal, Carl Archer, Stephen Furman, Jennifer Arno, Gavin Gomes, Manuel Fujinami, Kaoru Madhusudhan, Savita Mahroo, Omar A Webster, Andrew R Balaskas, Konstantinos Downes, Susan M Michaelides, Michel Pontikos, Nikolas BMJ Open Ophthalmology INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step towards effective care and patient management. However, genetic diagnosis is currently slow, expensive and not widely accessible. The aim of the current project is to address the evidence gap in IRD diagnosis with an AI algorithm, Eye2Gene, to accelerate and democratise the IRD diagnosis service. METHODS AND ANALYSIS: The data-only retrospective cohort study involves a target sample size of 10 000 participants, which has been derived based on the number of participants with IRD at three leading UK eye hospitals: Moorfields Eye Hospital (MEH), Oxford University Hospital (OUH) and Liverpool University Hospital (LUH), as well as a Japanese hospital, the Tokyo Medical Centre (TMC). Eye2Gene aims to predict causative genes from retinal images of patients with a diagnosis of IRD. For this purpose, 36 most common causative IRD genes have been selected to develop a training dataset for the software to have enough examples for training and validation for detection of each gene. The Eye2Gene algorithm is composed of multiple deep convolutional neural networks, which will be trained on MEH IRD datasets, and externally validated on OUH, LUH and TMC. ETHICS AND DISSEMINATION: This research was approved by the IRB and the UK Health Research Authority (Research Ethics Committee reference 22/WA/0049) ‘Eye2Gene: accelerating the diagnosis of IRDs’ Integrated Research Application System (IRAS) project ID: 242050. All research adhered to the tenets of the Declaration of Helsinki. Findings will be reported in an open-access format. BMJ Publishing Group 2023-03-20 /pmc/articles/PMC10030964/ /pubmed/36940949 http://dx.doi.org/10.1136/bmjopen-2022-071043 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Ophthalmology Nguyen, Quang Woof, William Kabiri, Nathaniel Sen, Sagnik Daich Varela, Malena Cabral De Guimaraes, Thales Antonio Shah, Mital Sumodhee, Dayyanah Moghul, Ismail Al-Khuzaei, Saoud Liu, Yichen Hollyhead, Catherine Tailor, Bhavna Lobo, Loy Veal, Carl Archer, Stephen Furman, Jennifer Arno, Gavin Gomes, Manuel Fujinami, Kaoru Madhusudhan, Savita Mahroo, Omar A Webster, Andrew R Balaskas, Konstantinos Downes, Susan M Michaelides, Michel Pontikos, Nikolas Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title | Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title_full | Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title_fullStr | Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title_full_unstemmed | Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title_short | Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) |
title_sort | can artificial intelligence accelerate the diagnosis of inherited retinal diseases? protocol for a data-only retrospective cohort study (eye2gene) |
topic | Ophthalmology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030964/ https://www.ncbi.nlm.nih.gov/pubmed/36940949 http://dx.doi.org/10.1136/bmjopen-2022-071043 |
work_keys_str_mv | AT nguyenquang canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT woofwilliam canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT kabirinathaniel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT sensagnik canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT daichvarelamalena canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT cabraldeguimaraesthalesantonio canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT shahmital canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT sumodheedayyanah canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT moghulismail canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT alkhuzaeisaoud canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT liuyichen canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT hollyheadcatherine canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT tailorbhavna canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT loboloy canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT vealcarl canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT archerstephen canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT furmanjennifer canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT arnogavin canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT gomesmanuel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT fujinamikaoru canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT madhusudhansavita canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT mahrooomara canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT websterandrewr canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT balaskaskonstantinos canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT downessusanm canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT michaelidesmichel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT pontikosnikolas canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene AT canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene |