Cargando…

Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)

INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step tow...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Quang, Woof, William, Kabiri, Nathaniel, Sen, Sagnik, Daich Varela, Malena, Cabral De Guimaraes, Thales Antonio, Shah, Mital, Sumodhee, Dayyanah, Moghul, Ismail, Al-Khuzaei, Saoud, Liu, Yichen, Hollyhead, Catherine, Tailor, Bhavna, Lobo, Loy, Veal, Carl, Archer, Stephen, Furman, Jennifer, Arno, Gavin, Gomes, Manuel, Fujinami, Kaoru, Madhusudhan, Savita, Mahroo, Omar A, Webster, Andrew R, Balaskas, Konstantinos, Downes, Susan M, Michaelides, Michel, Pontikos, Nikolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030964/
https://www.ncbi.nlm.nih.gov/pubmed/36940949
http://dx.doi.org/10.1136/bmjopen-2022-071043
_version_ 1784910494151213056
author Nguyen, Quang
Woof, William
Kabiri, Nathaniel
Sen, Sagnik
Daich Varela, Malena
Cabral De Guimaraes, Thales Antonio
Shah, Mital
Sumodhee, Dayyanah
Moghul, Ismail
Al-Khuzaei, Saoud
Liu, Yichen
Hollyhead, Catherine
Tailor, Bhavna
Lobo, Loy
Veal, Carl
Archer, Stephen
Furman, Jennifer
Arno, Gavin
Gomes, Manuel
Fujinami, Kaoru
Madhusudhan, Savita
Mahroo, Omar A
Webster, Andrew R
Balaskas, Konstantinos
Downes, Susan M
Michaelides, Michel
Pontikos, Nikolas
author_facet Nguyen, Quang
Woof, William
Kabiri, Nathaniel
Sen, Sagnik
Daich Varela, Malena
Cabral De Guimaraes, Thales Antonio
Shah, Mital
Sumodhee, Dayyanah
Moghul, Ismail
Al-Khuzaei, Saoud
Liu, Yichen
Hollyhead, Catherine
Tailor, Bhavna
Lobo, Loy
Veal, Carl
Archer, Stephen
Furman, Jennifer
Arno, Gavin
Gomes, Manuel
Fujinami, Kaoru
Madhusudhan, Savita
Mahroo, Omar A
Webster, Andrew R
Balaskas, Konstantinos
Downes, Susan M
Michaelides, Michel
Pontikos, Nikolas
author_sort Nguyen, Quang
collection PubMed
description INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step towards effective care and patient management. However, genetic diagnosis is currently slow, expensive and not widely accessible. The aim of the current project is to address the evidence gap in IRD diagnosis with an AI algorithm, Eye2Gene, to accelerate and democratise the IRD diagnosis service. METHODS AND ANALYSIS: The data-only retrospective cohort study involves a target sample size of 10 000 participants, which has been derived based on the number of participants with IRD at three leading UK eye hospitals: Moorfields Eye Hospital (MEH), Oxford University Hospital (OUH) and Liverpool University Hospital (LUH), as well as a Japanese hospital, the Tokyo Medical Centre (TMC). Eye2Gene aims to predict causative genes from retinal images of patients with a diagnosis of IRD. For this purpose, 36 most common causative IRD genes have been selected to develop a training dataset for the software to have enough examples for training and validation for detection of each gene. The Eye2Gene algorithm is composed of multiple deep convolutional neural networks, which will be trained on MEH IRD datasets, and externally validated on OUH, LUH and TMC. ETHICS AND DISSEMINATION: This research was approved by the IRB and the UK Health Research Authority (Research Ethics Committee reference 22/WA/0049) ‘Eye2Gene: accelerating the diagnosis of IRDs’ Integrated Research Application System (IRAS) project ID: 242050. All research adhered to the tenets of the Declaration of Helsinki. Findings will be reported in an open-access format.
format Online
Article
Text
id pubmed-10030964
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-100309642023-03-23 Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene) Nguyen, Quang Woof, William Kabiri, Nathaniel Sen, Sagnik Daich Varela, Malena Cabral De Guimaraes, Thales Antonio Shah, Mital Sumodhee, Dayyanah Moghul, Ismail Al-Khuzaei, Saoud Liu, Yichen Hollyhead, Catherine Tailor, Bhavna Lobo, Loy Veal, Carl Archer, Stephen Furman, Jennifer Arno, Gavin Gomes, Manuel Fujinami, Kaoru Madhusudhan, Savita Mahroo, Omar A Webster, Andrew R Balaskas, Konstantinos Downes, Susan M Michaelides, Michel Pontikos, Nikolas BMJ Open Ophthalmology INTRODUCTION: Inherited retinal diseases (IRD) are a leading cause of visual impairment and blindness in the working age population. Mutations in over 300 genes have been found to be associated with IRDs and identifying the affected gene in patients by molecular genetic testing is the first step towards effective care and patient management. However, genetic diagnosis is currently slow, expensive and not widely accessible. The aim of the current project is to address the evidence gap in IRD diagnosis with an AI algorithm, Eye2Gene, to accelerate and democratise the IRD diagnosis service. METHODS AND ANALYSIS: The data-only retrospective cohort study involves a target sample size of 10 000 participants, which has been derived based on the number of participants with IRD at three leading UK eye hospitals: Moorfields Eye Hospital (MEH), Oxford University Hospital (OUH) and Liverpool University Hospital (LUH), as well as a Japanese hospital, the Tokyo Medical Centre (TMC). Eye2Gene aims to predict causative genes from retinal images of patients with a diagnosis of IRD. For this purpose, 36 most common causative IRD genes have been selected to develop a training dataset for the software to have enough examples for training and validation for detection of each gene. The Eye2Gene algorithm is composed of multiple deep convolutional neural networks, which will be trained on MEH IRD datasets, and externally validated on OUH, LUH and TMC. ETHICS AND DISSEMINATION: This research was approved by the IRB and the UK Health Research Authority (Research Ethics Committee reference 22/WA/0049) ‘Eye2Gene: accelerating the diagnosis of IRDs’ Integrated Research Application System (IRAS) project ID: 242050. All research adhered to the tenets of the Declaration of Helsinki. Findings will be reported in an open-access format. BMJ Publishing Group 2023-03-20 /pmc/articles/PMC10030964/ /pubmed/36940949 http://dx.doi.org/10.1136/bmjopen-2022-071043 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
spellingShingle Ophthalmology
Nguyen, Quang
Woof, William
Kabiri, Nathaniel
Sen, Sagnik
Daich Varela, Malena
Cabral De Guimaraes, Thales Antonio
Shah, Mital
Sumodhee, Dayyanah
Moghul, Ismail
Al-Khuzaei, Saoud
Liu, Yichen
Hollyhead, Catherine
Tailor, Bhavna
Lobo, Loy
Veal, Carl
Archer, Stephen
Furman, Jennifer
Arno, Gavin
Gomes, Manuel
Fujinami, Kaoru
Madhusudhan, Savita
Mahroo, Omar A
Webster, Andrew R
Balaskas, Konstantinos
Downes, Susan M
Michaelides, Michel
Pontikos, Nikolas
Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title_full Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title_fullStr Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title_full_unstemmed Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title_short Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene)
title_sort can artificial intelligence accelerate the diagnosis of inherited retinal diseases? protocol for a data-only retrospective cohort study (eye2gene)
topic Ophthalmology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030964/
https://www.ncbi.nlm.nih.gov/pubmed/36940949
http://dx.doi.org/10.1136/bmjopen-2022-071043
work_keys_str_mv AT nguyenquang canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT woofwilliam canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT kabirinathaniel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT sensagnik canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT daichvarelamalena canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT cabraldeguimaraesthalesantonio canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT shahmital canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT sumodheedayyanah canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT moghulismail canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT alkhuzaeisaoud canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT liuyichen canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT hollyheadcatherine canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT tailorbhavna canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT loboloy canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT vealcarl canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT archerstephen canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT furmanjennifer canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT arnogavin canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT gomesmanuel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT fujinamikaoru canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT madhusudhansavita canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT mahrooomara canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT websterandrewr canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT balaskaskonstantinos canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT downessusanm canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT michaelidesmichel canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT pontikosnikolas canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene
AT canartificialintelligenceacceleratethediagnosisofinheritedretinaldiseasesprotocolforadataonlyretrospectivecohortstudyeye2gene