Cargando…

Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide

PURPOSE: Suicide is a global concern, especially among young people. Suicide prediction models have the potential to make it easier to identify patients who are at a high risk of suicide, but they have very little predictive power when there is a positive value for suicide mortality. Therefore, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Wenjing, Gao, Le, Fan, Yanna, Wang, Chunyan, Liu, Yanqing, Tian, Fei, Yi, Min, Peng, Xiaobo, Liu, Chunzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031109/
https://www.ncbi.nlm.nih.gov/pubmed/36969682
http://dx.doi.org/10.3389/fpubh.2023.1106454
_version_ 1784910531921969152
author Zheng, Wenjing
Gao, Le
Fan, Yanna
Wang, Chunyan
Liu, Yanqing
Tian, Fei
Yi, Min
Peng, Xiaobo
Liu, Chunzi
author_facet Zheng, Wenjing
Gao, Le
Fan, Yanna
Wang, Chunyan
Liu, Yanqing
Tian, Fei
Yi, Min
Peng, Xiaobo
Liu, Chunzi
author_sort Zheng, Wenjing
collection PubMed
description PURPOSE: Suicide is a global concern, especially among young people. Suicide prediction models have the potential to make it easier to identify patients who are at a high risk of suicide, but they have very little predictive power when there is a positive value for suicide mortality. Therefore, the aim of the study is to uncover potential risk factors associated with suicide by self-poisoning and further to provide a trustworthy nomogram to predict self-poisoning suicide among poisoned patients. METHODS: This study prospectively enrolled 237 patients who were treated for poisoning at the Fifth Medical Center of PLA General Hospital (Beijing) between May 2021 and May 2022. Patient's basic characteristics, daily activities, mental health status, and history of psychological illnesses were gathered to examine their predictive power for self-poisoning suicide. On developing a prediction model, patients were split 8:2 into a training (n = 196) group and a validation (n = 41) group at random via computer. The training group worked on model development, while the validation group worked on model validation. In this study, the Hosmer and Lemeshow test, accuracy, and area under the curve were the primary evaluation criteria. Shapley Additive exPlanations (SHAP) was determined to evaluate feature importance. To make the prediction model easy for researchers to utilize, it was presented in nomogram format. Two risk groups of patients were identified based on the ideal cut-off value. RESULTS: Of all poisoned patients, 64.6% committed suicide by self-poisoning. With regard to self-poisoning attempted suicide, multivariate analysis demonstrated that female gender, smoking, generalized anxiety disorder-7 (GAD-7), and beck hopelessness scale-20 (BHS-20) were significant risk factors, whereas married status, relatively higher education level, a sedentary time of 1–3 h per day, higher sport frequency per week, higher monthly income were significant protective features. The nomogram contained each of the aforementioned nine features. In the training group, the area under curve (AUC) of the nomogram was up to 0.938 (0.904–0.972), whereas in the validation group, it reached a maximum of 0.974 (0.937–1.000). Corresponding accuracy rates were up to 0.883 and 0.927, respectively, and the P-values for the Hosmer and Lemeshow test were 0.178 and 0.346, respectively. SHAP demonstrated that the top three most important features were BHS-20, GAD-7, and marital status. Based on the best cut-off value of the nomogram (40%), patients in the high-risk group had a nearly six-time larger likelihood of committing suicide by self-poisoning than patients in the low-risk group (88.68 vs. 15.38%, P < 0.001). The dynamic nomogram was made available at the following address: https://xiaobo.shinyapps.io/Nomogramselfpoisoningsuicide/. CONCLUSIONS: This study proposes a prediction model to stratify patients at a high risk of suicide by self-poisoning and to guide individual preventive strategies. Patients in the high-risk group require further mental health counseling to alleviate anxiety and hopelessness, healthy lifestyle like quitting smoking and exercising more, and restriction of access to poison and psychiatric drugs.
format Online
Article
Text
id pubmed-10031109
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-100311092023-03-23 Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide Zheng, Wenjing Gao, Le Fan, Yanna Wang, Chunyan Liu, Yanqing Tian, Fei Yi, Min Peng, Xiaobo Liu, Chunzi Front Public Health Public Health PURPOSE: Suicide is a global concern, especially among young people. Suicide prediction models have the potential to make it easier to identify patients who are at a high risk of suicide, but they have very little predictive power when there is a positive value for suicide mortality. Therefore, the aim of the study is to uncover potential risk factors associated with suicide by self-poisoning and further to provide a trustworthy nomogram to predict self-poisoning suicide among poisoned patients. METHODS: This study prospectively enrolled 237 patients who were treated for poisoning at the Fifth Medical Center of PLA General Hospital (Beijing) between May 2021 and May 2022. Patient's basic characteristics, daily activities, mental health status, and history of psychological illnesses were gathered to examine their predictive power for self-poisoning suicide. On developing a prediction model, patients were split 8:2 into a training (n = 196) group and a validation (n = 41) group at random via computer. The training group worked on model development, while the validation group worked on model validation. In this study, the Hosmer and Lemeshow test, accuracy, and area under the curve were the primary evaluation criteria. Shapley Additive exPlanations (SHAP) was determined to evaluate feature importance. To make the prediction model easy for researchers to utilize, it was presented in nomogram format. Two risk groups of patients were identified based on the ideal cut-off value. RESULTS: Of all poisoned patients, 64.6% committed suicide by self-poisoning. With regard to self-poisoning attempted suicide, multivariate analysis demonstrated that female gender, smoking, generalized anxiety disorder-7 (GAD-7), and beck hopelessness scale-20 (BHS-20) were significant risk factors, whereas married status, relatively higher education level, a sedentary time of 1–3 h per day, higher sport frequency per week, higher monthly income were significant protective features. The nomogram contained each of the aforementioned nine features. In the training group, the area under curve (AUC) of the nomogram was up to 0.938 (0.904–0.972), whereas in the validation group, it reached a maximum of 0.974 (0.937–1.000). Corresponding accuracy rates were up to 0.883 and 0.927, respectively, and the P-values for the Hosmer and Lemeshow test were 0.178 and 0.346, respectively. SHAP demonstrated that the top three most important features were BHS-20, GAD-7, and marital status. Based on the best cut-off value of the nomogram (40%), patients in the high-risk group had a nearly six-time larger likelihood of committing suicide by self-poisoning than patients in the low-risk group (88.68 vs. 15.38%, P < 0.001). The dynamic nomogram was made available at the following address: https://xiaobo.shinyapps.io/Nomogramselfpoisoningsuicide/. CONCLUSIONS: This study proposes a prediction model to stratify patients at a high risk of suicide by self-poisoning and to guide individual preventive strategies. Patients in the high-risk group require further mental health counseling to alleviate anxiety and hopelessness, healthy lifestyle like quitting smoking and exercising more, and restriction of access to poison and psychiatric drugs. Frontiers Media S.A. 2023-03-08 /pmc/articles/PMC10031109/ /pubmed/36969682 http://dx.doi.org/10.3389/fpubh.2023.1106454 Text en Copyright © 2023 Zheng, Gao, Fan, Wang, Liu, Tian, Yi, Peng and Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Public Health
Zheng, Wenjing
Gao, Le
Fan, Yanna
Wang, Chunyan
Liu, Yanqing
Tian, Fei
Yi, Min
Peng, Xiaobo
Liu, Chunzi
Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title_full Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title_fullStr Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title_full_unstemmed Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title_short Identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
title_sort identification of risk factors for attempted suicide by self-poisoning and a nomogram to predict self-poisoning suicide
topic Public Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031109/
https://www.ncbi.nlm.nih.gov/pubmed/36969682
http://dx.doi.org/10.3389/fpubh.2023.1106454
work_keys_str_mv AT zhengwenjing identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT gaole identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT fanyanna identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT wangchunyan identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT liuyanqing identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT tianfei identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT yimin identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT pengxiaobo identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide
AT liuchunzi identificationofriskfactorsforattemptedsuicidebyselfpoisoningandanomogramtopredictselfpoisoningsuicide