Cargando…
N-Net: an UNet architecture with dual encoder for medical image segmentation
In order to assist physicians in diagnosis and treatment planning, accurate and automatic methods of organ segmentation are needed in clinical practice. UNet and its improved models, such as UNet + + and UNt3 + , have been powerful tools for medical image segmentation. In this paper, we focus on he...
Autores principales: | Liang, Bingtao, Tang, Chen, Zhang, Wei, Xu, Min, Wu, Tianbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031177/ https://www.ncbi.nlm.nih.gov/pubmed/37362231 http://dx.doi.org/10.1007/s11760-023-02528-9 |
Ejemplares similares
-
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Review of Semantic Segmentation of Medical Images Using Modified Architectures of UNET
por: Krithika alias AnbuDevi, M., et al.
Publicado: (2022) -
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022) -
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022)