Cargando…
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
A model with high accuracy and strong generalization performance is conducive to preventing serious pollution incidents and improving the decision-making ability of urban planning. This paper proposes a new neural network structure based on seasonal–trend decomposition using locally weighted scatter...
Autores principales: | Li, Wenlin, Jiang, Xuchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031189/ https://www.ncbi.nlm.nih.gov/pubmed/36949097 http://dx.doi.org/10.1038/s41598-023-31569-w |
Ejemplares similares
-
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023) -
Electricity price forecast based on the STL-TCN-NBEATS model
por: Zhang, Biao, et al.
Publicado: (2023) -
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023) -
Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model
por: Guo, Qiao, et al.
Publicado: (2023)