Cargando…

Understanding and modeling regional specification of the human ganglionic eminence

Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification facto...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunt, Cameron P.J., Moriarty, Niamh, van Deursen, Coen B.J., Gantner, Carlos W., Thompson, Lachlan H., Parish, Clare L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031306/
https://www.ncbi.nlm.nih.gov/pubmed/36801004
http://dx.doi.org/10.1016/j.stemcr.2023.01.010
Descripción
Sumario:Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification factors often span across developing zones contributing to difficulty in defining unique LGE, MGE or CGE profiles. Here we use human pluripotent stem cell (hPSC) reporter lines (NKX2.1-GFP and MEIS2-mCherry) and manipulation of morphogen gradients to gain greater insight into regional specification of these distinct zones. We identified Sonic hedgehog (SHH)-WNT crosstalk in regulating LGE and MGE fate and uncovered a role for retinoic acid signaling in CGE development. Unraveling the influence of these signaling pathways permitted development of fully defined protocols that favored generation of the three GE domains. These findings provide insight into the context-dependent role of morphogens in human GE specification and are of value for in vitro disease modeling and advancement of new therapies.