Cargando…
Stress-field driven conformal lattice design using circle packing algorithm
Reliable extreme lightweight is the pursuit in many high-end manufacturing areas. Aided by additive manufacturing (AM), lattice material has become a promising candidate for lightweight optimization. Configuration of lattice units at the material level and the distribution of lattice units at the st...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031376/ https://www.ncbi.nlm.nih.gov/pubmed/36967951 http://dx.doi.org/10.1016/j.heliyon.2023.e14448 |
_version_ | 1784910593892810752 |
---|---|
author | Liu, Fuyuan Chen, Min Wang, Lizhe Luo, Tianheng Chen, Geng |
author_facet | Liu, Fuyuan Chen, Min Wang, Lizhe Luo, Tianheng Chen, Geng |
author_sort | Liu, Fuyuan |
collection | PubMed |
description | Reliable extreme lightweight is the pursuit in many high-end manufacturing areas. Aided by additive manufacturing (AM), lattice material has become a promising candidate for lightweight optimization. Configuration of lattice units at the material level and the distribution of lattice units at the structure level are the two main research directions recently. This paper proposes a generative strategy for lattice infilling optimization using organic strut-based lattices. A sphere packing algorithm driven by von Mises stress fields determines the lattice distribution density. Two typical configurations, Voronoi polygons and Delaunay triangles, are adopted to constitute the frames, respectively. Based on finite element analysis, a simplified truss model is utilized to evaluate the lattice distribution in terms of mechanical properties. Optimization parameters, including node number, mapping gradient, and the range of varying circle size, are investigated through the genetic algorithm (GA). Multiple feasible solutions are obtained for further solidification modelling. To avoid the stress concentration, the organic strut-based lattice units are created by the iso-surface modelling method. The effectiveness of the proposed generative approach is illustrated through a classical 3-point bending beam. The stiffness of the optimized structure, verified through experimental testing, has increased 80% over the one using the traditional uniform body center cubic (BCC) lattice distribution. |
format | Online Article Text |
id | pubmed-10031376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100313762023-03-23 Stress-field driven conformal lattice design using circle packing algorithm Liu, Fuyuan Chen, Min Wang, Lizhe Luo, Tianheng Chen, Geng Heliyon Research Article Reliable extreme lightweight is the pursuit in many high-end manufacturing areas. Aided by additive manufacturing (AM), lattice material has become a promising candidate for lightweight optimization. Configuration of lattice units at the material level and the distribution of lattice units at the structure level are the two main research directions recently. This paper proposes a generative strategy for lattice infilling optimization using organic strut-based lattices. A sphere packing algorithm driven by von Mises stress fields determines the lattice distribution density. Two typical configurations, Voronoi polygons and Delaunay triangles, are adopted to constitute the frames, respectively. Based on finite element analysis, a simplified truss model is utilized to evaluate the lattice distribution in terms of mechanical properties. Optimization parameters, including node number, mapping gradient, and the range of varying circle size, are investigated through the genetic algorithm (GA). Multiple feasible solutions are obtained for further solidification modelling. To avoid the stress concentration, the organic strut-based lattice units are created by the iso-surface modelling method. The effectiveness of the proposed generative approach is illustrated through a classical 3-point bending beam. The stiffness of the optimized structure, verified through experimental testing, has increased 80% over the one using the traditional uniform body center cubic (BCC) lattice distribution. Elsevier 2023-03-13 /pmc/articles/PMC10031376/ /pubmed/36967951 http://dx.doi.org/10.1016/j.heliyon.2023.e14448 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Liu, Fuyuan Chen, Min Wang, Lizhe Luo, Tianheng Chen, Geng Stress-field driven conformal lattice design using circle packing algorithm |
title | Stress-field driven conformal lattice design using circle packing algorithm |
title_full | Stress-field driven conformal lattice design using circle packing algorithm |
title_fullStr | Stress-field driven conformal lattice design using circle packing algorithm |
title_full_unstemmed | Stress-field driven conformal lattice design using circle packing algorithm |
title_short | Stress-field driven conformal lattice design using circle packing algorithm |
title_sort | stress-field driven conformal lattice design using circle packing algorithm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031376/ https://www.ncbi.nlm.nih.gov/pubmed/36967951 http://dx.doi.org/10.1016/j.heliyon.2023.e14448 |
work_keys_str_mv | AT liufuyuan stressfielddrivenconformallatticedesignusingcirclepackingalgorithm AT chenmin stressfielddrivenconformallatticedesignusingcirclepackingalgorithm AT wanglizhe stressfielddrivenconformallatticedesignusingcirclepackingalgorithm AT luotianheng stressfielddrivenconformallatticedesignusingcirclepackingalgorithm AT chengeng stressfielddrivenconformallatticedesignusingcirclepackingalgorithm |