Cargando…

Data-driven spatio-temporal modelling of glioblastoma

Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Jørgensen, Andreas Christ Sølvsten, Hill, Ciaran Scott, Sturrock, Marc, Tang, Wenhao, Karamched, Saketh R., Gorup, Dunja, Lythgoe, Mark F., Parrinello, Simona, Marguerat, Samuel, Shahrezaei, Vahid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031411/
https://www.ncbi.nlm.nih.gov/pubmed/36968241
http://dx.doi.org/10.1098/rsos.221444
_version_ 1784910601015787520
author Jørgensen, Andreas Christ Sølvsten
Hill, Ciaran Scott
Sturrock, Marc
Tang, Wenhao
Karamched, Saketh R.
Gorup, Dunja
Lythgoe, Mark F.
Parrinello, Simona
Marguerat, Samuel
Shahrezaei, Vahid
author_facet Jørgensen, Andreas Christ Sølvsten
Hill, Ciaran Scott
Sturrock, Marc
Tang, Wenhao
Karamched, Saketh R.
Gorup, Dunja
Lythgoe, Mark F.
Parrinello, Simona
Marguerat, Samuel
Shahrezaei, Vahid
author_sort Jørgensen, Andreas Christ Sølvsten
collection PubMed
description Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
format Online
Article
Text
id pubmed-10031411
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-100314112023-03-23 Data-driven spatio-temporal modelling of glioblastoma Jørgensen, Andreas Christ Sølvsten Hill, Ciaran Scott Sturrock, Marc Tang, Wenhao Karamched, Saketh R. Gorup, Dunja Lythgoe, Mark F. Parrinello, Simona Marguerat, Samuel Shahrezaei, Vahid R Soc Open Sci Mathematics Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research. The Royal Society 2023-03-22 /pmc/articles/PMC10031411/ /pubmed/36968241 http://dx.doi.org/10.1098/rsos.221444 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Mathematics
Jørgensen, Andreas Christ Sølvsten
Hill, Ciaran Scott
Sturrock, Marc
Tang, Wenhao
Karamched, Saketh R.
Gorup, Dunja
Lythgoe, Mark F.
Parrinello, Simona
Marguerat, Samuel
Shahrezaei, Vahid
Data-driven spatio-temporal modelling of glioblastoma
title Data-driven spatio-temporal modelling of glioblastoma
title_full Data-driven spatio-temporal modelling of glioblastoma
title_fullStr Data-driven spatio-temporal modelling of glioblastoma
title_full_unstemmed Data-driven spatio-temporal modelling of glioblastoma
title_short Data-driven spatio-temporal modelling of glioblastoma
title_sort data-driven spatio-temporal modelling of glioblastoma
topic Mathematics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031411/
https://www.ncbi.nlm.nih.gov/pubmed/36968241
http://dx.doi.org/10.1098/rsos.221444
work_keys_str_mv AT jørgensenandreaschristsølvsten datadrivenspatiotemporalmodellingofglioblastoma
AT hillciaranscott datadrivenspatiotemporalmodellingofglioblastoma
AT sturrockmarc datadrivenspatiotemporalmodellingofglioblastoma
AT tangwenhao datadrivenspatiotemporalmodellingofglioblastoma
AT karamchedsakethr datadrivenspatiotemporalmodellingofglioblastoma
AT gorupdunja datadrivenspatiotemporalmodellingofglioblastoma
AT lythgoemarkf datadrivenspatiotemporalmodellingofglioblastoma
AT parrinellosimona datadrivenspatiotemporalmodellingofglioblastoma
AT margueratsamuel datadrivenspatiotemporalmodellingofglioblastoma
AT shahrezaeivahid datadrivenspatiotemporalmodellingofglioblastoma