Cargando…
Data-driven spatio-temporal modelling of glioblastoma
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031411/ https://www.ncbi.nlm.nih.gov/pubmed/36968241 http://dx.doi.org/10.1098/rsos.221444 |
_version_ | 1784910601015787520 |
---|---|
author | Jørgensen, Andreas Christ Sølvsten Hill, Ciaran Scott Sturrock, Marc Tang, Wenhao Karamched, Saketh R. Gorup, Dunja Lythgoe, Mark F. Parrinello, Simona Marguerat, Samuel Shahrezaei, Vahid |
author_facet | Jørgensen, Andreas Christ Sølvsten Hill, Ciaran Scott Sturrock, Marc Tang, Wenhao Karamched, Saketh R. Gorup, Dunja Lythgoe, Mark F. Parrinello, Simona Marguerat, Samuel Shahrezaei, Vahid |
author_sort | Jørgensen, Andreas Christ Sølvsten |
collection | PubMed |
description | Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research. |
format | Online Article Text |
id | pubmed-10031411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100314112023-03-23 Data-driven spatio-temporal modelling of glioblastoma Jørgensen, Andreas Christ Sølvsten Hill, Ciaran Scott Sturrock, Marc Tang, Wenhao Karamched, Saketh R. Gorup, Dunja Lythgoe, Mark F. Parrinello, Simona Marguerat, Samuel Shahrezaei, Vahid R Soc Open Sci Mathematics Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research. The Royal Society 2023-03-22 /pmc/articles/PMC10031411/ /pubmed/36968241 http://dx.doi.org/10.1098/rsos.221444 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Mathematics Jørgensen, Andreas Christ Sølvsten Hill, Ciaran Scott Sturrock, Marc Tang, Wenhao Karamched, Saketh R. Gorup, Dunja Lythgoe, Mark F. Parrinello, Simona Marguerat, Samuel Shahrezaei, Vahid Data-driven spatio-temporal modelling of glioblastoma |
title | Data-driven spatio-temporal modelling of glioblastoma |
title_full | Data-driven spatio-temporal modelling of glioblastoma |
title_fullStr | Data-driven spatio-temporal modelling of glioblastoma |
title_full_unstemmed | Data-driven spatio-temporal modelling of glioblastoma |
title_short | Data-driven spatio-temporal modelling of glioblastoma |
title_sort | data-driven spatio-temporal modelling of glioblastoma |
topic | Mathematics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031411/ https://www.ncbi.nlm.nih.gov/pubmed/36968241 http://dx.doi.org/10.1098/rsos.221444 |
work_keys_str_mv | AT jørgensenandreaschristsølvsten datadrivenspatiotemporalmodellingofglioblastoma AT hillciaranscott datadrivenspatiotemporalmodellingofglioblastoma AT sturrockmarc datadrivenspatiotemporalmodellingofglioblastoma AT tangwenhao datadrivenspatiotemporalmodellingofglioblastoma AT karamchedsakethr datadrivenspatiotemporalmodellingofglioblastoma AT gorupdunja datadrivenspatiotemporalmodellingofglioblastoma AT lythgoemarkf datadrivenspatiotemporalmodellingofglioblastoma AT parrinellosimona datadrivenspatiotemporalmodellingofglioblastoma AT margueratsamuel datadrivenspatiotemporalmodellingofglioblastoma AT shahrezaeivahid datadrivenspatiotemporalmodellingofglioblastoma |