Cargando…
Data-driven spatio-temporal modelling of glioblastoma
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we...
Autores principales: | Jørgensen, Andreas Christ Sølvsten, Hill, Ciaran Scott, Sturrock, Marc, Tang, Wenhao, Karamched, Saketh R., Gorup, Dunja, Lythgoe, Mark F., Parrinello, Simona, Marguerat, Samuel, Shahrezaei, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031411/ https://www.ncbi.nlm.nih.gov/pubmed/36968241 http://dx.doi.org/10.1098/rsos.221444 |
Ejemplares similares
-
Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics
por: Tang, Wenhao, et al.
Publicado: (2023) -
Efficient Bayesian inference for stochastic agent-based models
por: Jørgensen, Andreas Christ Sølvsten, et al.
Publicado: (2022) -
Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits
por: Bertaux, François, et al.
Publicado: (2018) -
A coarse-grained resource allocation model of carbon and nitrogen metabolism in unicellular microbes
por: Kleijn, Istvan T., et al.
Publicado: (2023) -
bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data
por: Tang, Wenhao, et al.
Publicado: (2020)