Cargando…
Evaluating the Ability of Open-Source Artificial Intelligence to Predict Accepting-Journal Impact Factor and Eigenfactor Score Using Academic Article Abstracts: Cross-sectional Machine Learning Analysis
BACKGROUND: Strategies to improve the selection of appropriate target journals may reduce delays in disseminating research results. Machine learning is increasingly used in content-based recommender algorithms to guide journal submissions for academic articles. OBJECTIVE: We sought to evaluate the p...
Autores principales: | Macri, Carmelo, Bacchi, Stephen, Teoh, Sheng Chieh, Lim, Wan Yin, Lam, Lydia, Patel, Sandy, Slee, Mark, Casson, Robert, Chan, WengOnn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031443/ https://www.ncbi.nlm.nih.gov/pubmed/36881455 http://dx.doi.org/10.2196/42789 |
Ejemplares similares
-
A case study in applying artificial intelligence-based named entity recognition to develop an automated ophthalmic disease registry
por: Macri, Carmelo Z, et al.
Publicado: (2023) -
Determinants of impact factor and Eigenfactor score in otolaryngology journals
por: Ali, Ayad, et al.
Publicado: (2023) -
Integrative Approach to Quality Assessment of Medical Journals Using Impact Factor, Eigenfactor, and Article Influence Scores
por: Rizkallah, Jacques, et al.
Publicado: (2010) -
Comparison Between Impact Factor, Eigenfactor Metrics, and SCimago Journal Rank Indicator of Pediatric Neurology Journals
por: Kianifar, Hamidreza, et al.
Publicado: (2014) -
The potential impact of 5G telecommunication technology on ophthalmology
por: Singh, Gurfarmaan, et al.
Publicado: (2021)