Cargando…

The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding

N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kina...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Sumita, Vivoli Vega, Mirella, Ames, Jessica R., Britten, Nicole, Kent, Amy, Evans, Kim, Isupov, Michail N., Harmer, Nicholas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031466/
https://www.ncbi.nlm.nih.gov/pubmed/36806680
http://dx.doi.org/10.1016/j.jbc.2023.103033
_version_ 1784910613495939072
author Roy, Sumita
Vivoli Vega, Mirella
Ames, Jessica R.
Britten, Nicole
Kent, Amy
Evans, Kim
Isupov, Michail N.
Harmer, Nicholas J.
author_facet Roy, Sumita
Vivoli Vega, Mirella
Ames, Jessica R.
Britten, Nicole
Kent, Amy
Evans, Kim
Isupov, Michail N.
Harmer, Nicholas J.
author_sort Roy, Sumita
collection PubMed
description N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
format Online
Article
Text
id pubmed-10031466
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-100314662023-03-23 The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding Roy, Sumita Vivoli Vega, Mirella Ames, Jessica R. Britten, Nicole Kent, Amy Evans, Kim Isupov, Michail N. Harmer, Nicholas J. J Biol Chem Research Article N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase. American Society for Biochemistry and Molecular Biology 2023-02-16 /pmc/articles/PMC10031466/ /pubmed/36806680 http://dx.doi.org/10.1016/j.jbc.2023.103033 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Roy, Sumita
Vivoli Vega, Mirella
Ames, Jessica R.
Britten, Nicole
Kent, Amy
Evans, Kim
Isupov, Michail N.
Harmer, Nicholas J.
The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title_full The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title_fullStr The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title_full_unstemmed The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title_short The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
title_sort rok kinase n-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031466/
https://www.ncbi.nlm.nih.gov/pubmed/36806680
http://dx.doi.org/10.1016/j.jbc.2023.103033
work_keys_str_mv AT roysumita therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT vivolivegamirella therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT amesjessicar therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT brittennicole therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT kentamy therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT evanskim therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT isupovmichailn therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT harmernicholasj therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT therokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT roysumita rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT vivolivegamirella rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT amesjessicar rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT brittennicole rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT kentamy rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT evanskim rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT isupovmichailn rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT harmernicholasj rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding
AT rokkinasenacetylglucosaminekinaseusesasequentialrandomenzymemechanismwithsuccessiveconformationalchangesuponeachsubstratebinding