Cargando…
Highly Enantioselective Binaphthyl-Based Chiral Phosphoramidite Stabilized-Palladium Nanoparticles for Asymmetric Suzuki C–C Coupling Reactions
[Image: see text] The optically pure binaphthyl-based phosphoramidite ligands and their perfluorinated analogs have been first used for the preparation of chiral palladium nanoparticles (PdNPs). These PdNPs have been extensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031557/ https://www.ncbi.nlm.nih.gov/pubmed/36877595 http://dx.doi.org/10.1021/acs.inorgchem.3c00079 |
Sumario: | [Image: see text] The optically pure binaphthyl-based phosphoramidite ligands and their perfluorinated analogs have been first used for the preparation of chiral palladium nanoparticles (PdNPs). These PdNPs have been extensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, (31)P NMR, and thermogravimetric analysis techniques. The circular dichroism(CD) analysis of chiral PdNPs exhibited negative cotton effects. Perfluorinated phosphoramidite ligands provided smaller (2.32–3.45 nm) and well-defined nanoparticles, in comparison with the nonfluorinated analog (4.12 nm). The catalytic behavior of binaphthyl-based phosphoramidite stabilized chiral PdNPs has been investigated in the asymmetric Suzuki C–C coupling reactions for the formation of sterically hindered binaphthalene units, and high isolated yields (up to 85%) were achieved with excellent enantiomeric excesses (>99% ee). Recycling studies revealed that chiral PdNPs could be reused over 12 times without significant loss in activity and enantioselectivity (>99% ee). The nature of the active species was also investigated with a combination of poisoning and hot filtration tests and found that catalytically active species is the heterogeneous nanoparticles. These results indicate that the use of phosphoramidite ligands as a stabilizer for developing efficient and unique chiral nanoparticles could open up a field for many other asymmetric organic transformations promoted by chiral catalysts. |
---|