Cargando…
Machine learning approach for predicting inhalation injury in patients with burns
BACKGROUND: The coronavirus disease pandemic has had a tangible impact on bronchoscopy for burn inpatients due to isolation and triage measures. We utilised the machine-learning approach to identify risk factors for predicting mild and severe inhalation injury and whether patients with burns experie...
Autores principales: | Yang, Shih-Yi, Huang, Chih-Jung, Yen, Cheng-I., Kao, Yu-Ching, Hsiao, Yen-Chang, Yang, Jui-Yung, Chang, Shu-Yin, Chuang, Shiow-Shuh, Chen, Hung-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd and ISBI.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032063/ https://www.ncbi.nlm.nih.gov/pubmed/37055284 http://dx.doi.org/10.1016/j.burns.2023.03.011 |
Ejemplares similares
-
Preventing nasal airway collapse with irradiated homologous costal cartilage versus expanded polytetrafluoroethylene: a novel animal model for nasal airway reconstruction
por: Yen, Cheng-I, et al.
Publicado: (2019) -
Hyperphosphatemia is associated with high mortality in severe burns
por: Kuo, George, et al.
Publicado: (2018) -
Acquisition and clearance of multidrug resistant Acinetobacter baumannii on healthy young adults concurrently burned in a dust explosion in Taiwan: the implication for antimicrobial stewardship
por: Huang, Po-Yen, et al.
Publicado: (2017) -
Extracorporeal Life Support for Severely Burned Patients with Concurrent Inhalation Injury and Acute Respiratory Distress Syndrome: Experience from a Military Medical Burn Center
por: Huang, Chih-Han, et al.
Publicado: (2023) -
Inhalation injury in critical burn patients
por: Cachafeiro, L, et al.
Publicado: (2013)