Cargando…
Global solutions of aggregation equations and other flows with random diffusion
Aggregation equations, such as the parabolic-elliptic Patlak–Keller–Segel model, are known to have an optimal threshold for global existence versus finite-time blow-up. In particular, if the diffusion is absent, then all smooth solutions with finite second moment can exist only locally in time. Neve...
Autores principales: | Rosenzweig, Matthew, Staffilani, Gigliola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032336/ https://www.ncbi.nlm.nih.gov/pubmed/36969725 http://dx.doi.org/10.1007/s00440-022-01171-8 |
Ejemplares similares
-
Phase Transitions for Nonlinear Nonlocal Aggregation-Diffusion Equations
por: Carrillo, José A., et al.
Publicado: (2021) -
Global solutions of nonlinear Schrödinger equations
por: Bourgain, J
Publicado: (1999) -
Existence of solutions to a diffusive shallow medium equation
por: Bögelein, Verena, et al.
Publicado: (2020) -
Approximate solution of random equations
por: Bharucha-Reid, Albert Turner
Publicado: (1979) -
The nonlinear diffusion equation: asymptotic solutions and statistical problems
por: Burgers, J M
Publicado: (1974)