Cargando…
OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer
In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its...
Autores principales: | Halkola, Anni S., Joki, Kaisa, Mirtti, Tuomas, Mäkelä, Marko M., Aittokallio, Tero, Laajala, Teemu D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032505/ https://www.ncbi.nlm.nih.gov/pubmed/36897911 http://dx.doi.org/10.1371/journal.pcbi.1010333 |
Ejemplares similares
-
ePCR: an R-package for survival and time-to-event prediction in advanced prostate cancer, applied to real-world patient cohorts
por: Laajala, Teemu D, et al.
Publicado: (2018) -
Novel Lignan and Stilbenoid Mixture Shows Anticarcinogenic Efficacy in Preclinical PC-3M-luc2 Prostate Cancer Model
por: Yatkin, Emrah, et al.
Publicado: (2014) -
Erratum: Longitudinal modeling of ultrasensitive and traditional prostate-specific antigen and prediction of biochemical recurrence after radical prostatectomy
por: Laajala, Teemu D., et al.
Publicado: (2017) -
Longitudinal modeling of ultrasensitive and traditional prostate-specific antigen and prediction of biochemical recurrence after radical prostatectomy
por: Laajala, Teemu D., et al.
Publicado: (2016) -
A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
por: Laajala, Teemu D, et al.
Publicado: (2009)