Cargando…

O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow

The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hye-Seon, Ha, Hyun-Su, Kim, Dae-Hyun, Son, Deok Hyeon, Baek, Sewoom, Park, Jeongeun, Lee, Chan Hee, Park, Suji, Yoon, Hyo-Jin, Yu, Seung Eun, Kang, Jeon Il, Park, Kyung Min, Shin, Young Min, Lee, Jung Bok, Sung, Hak-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032601/
https://www.ncbi.nlm.nih.gov/pubmed/36947623
http://dx.doi.org/10.1126/sciadv.add4210
_version_ 1784910837554610176
author Kim, Hye-Seon
Ha, Hyun-Su
Kim, Dae-Hyun
Son, Deok Hyeon
Baek, Sewoom
Park, Jeongeun
Lee, Chan Hee
Park, Suji
Yoon, Hyo-Jin
Yu, Seung Eun
Kang, Jeon Il
Park, Kyung Min
Shin, Young Min
Lee, Jung Bok
Sung, Hak-Joon
author_facet Kim, Hye-Seon
Ha, Hyun-Su
Kim, Dae-Hyun
Son, Deok Hyeon
Baek, Sewoom
Park, Jeongeun
Lee, Chan Hee
Park, Suji
Yoon, Hyo-Jin
Yu, Seung Eun
Kang, Jeon Il
Park, Kyung Min
Shin, Young Min
Lee, Jung Bok
Sung, Hak-Joon
author_sort Kim, Hye-Seon
collection PubMed
description The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment.
format Online
Article
Text
id pubmed-10032601
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-100326012023-03-23 O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow Kim, Hye-Seon Ha, Hyun-Su Kim, Dae-Hyun Son, Deok Hyeon Baek, Sewoom Park, Jeongeun Lee, Chan Hee Park, Suji Yoon, Hyo-Jin Yu, Seung Eun Kang, Jeon Il Park, Kyung Min Shin, Young Min Lee, Jung Bok Sung, Hak-Joon Sci Adv Biomedicine and Life Sciences The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment. American Association for the Advancement of Science 2023-03-22 /pmc/articles/PMC10032601/ /pubmed/36947623 http://dx.doi.org/10.1126/sciadv.add4210 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Kim, Hye-Seon
Ha, Hyun-Su
Kim, Dae-Hyun
Son, Deok Hyeon
Baek, Sewoom
Park, Jeongeun
Lee, Chan Hee
Park, Suji
Yoon, Hyo-Jin
Yu, Seung Eun
Kang, Jeon Il
Park, Kyung Min
Shin, Young Min
Lee, Jung Bok
Sung, Hak-Joon
O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title_full O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title_fullStr O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title_full_unstemmed O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title_short O(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
title_sort o(2) variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032601/
https://www.ncbi.nlm.nih.gov/pubmed/36947623
http://dx.doi.org/10.1126/sciadv.add4210
work_keys_str_mv AT kimhyeseon o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT hahyunsu o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT kimdaehyun o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT sondeokhyeon o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT baeksewoom o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT parkjeongeun o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT leechanhee o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT parksuji o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT yoonhyojin o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT yuseungeun o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT kangjeonil o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT parkkyungmin o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT shinyoungmin o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT leejungbok o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow
AT sunghakjoon o2variantchiptosimulatesitespecificskeletogenesisfromhypoxicbonemarrow