Cargando…
Development and External Validation of a Deep Learning Algorithm to Identify and Localize Subarachnoid Hemorrhage on CT Scans
BACKGROUND AND OBJECTIVES: In medical imaging, a limited number of trained deep learning algorithms have been externally validated and released publicly. We hypothesized that a deep learning algorithm can be trained to identify and localize subarachnoid hemorrhage (SAH) on head computed tomography (...
Autores principales: | Thanellas, Antonios, Peura, Heikki, Lavinto, Mikko, Ruokola, Tomi, Vieli, Moira, Staartjes, Victor E., Winklhofer, Sebastian, Serra, Carlo, Regli, Luca, Korja, Miikka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033159/ https://www.ncbi.nlm.nih.gov/pubmed/36639236 http://dx.doi.org/10.1212/WNL.0000000000201710 |
Ejemplares similares
-
DeepEOR: automated perioperative volumetric assessment of variable grade gliomas using deep learning
por: Zanier, Olivier, et al.
Publicado: (2022) -
Obesity paradox in subarachnoid hemorrhage: a systematic review
por: Rautalin, Ilari, et al.
Publicado: (2019) -
Screening tools for early neuropsychological impairment after aneurysmal subarachnoid hemorrhage
por: Rautalin, Ilari M., et al.
Publicado: (2019) -
Cholesterol as a Risk Factor for Subarachnoid Hemorrhage: A Systematic Review
por: Lindbohm, Joni Valdemar, et al.
Publicado: (2016) -
Risk Factors for Delayed Cerebral Ischemia in Good‐Grade Patients With Aneurysmal Subarachnoid Hemorrhage
por: Rautalin, Ilari, et al.
Publicado: (2022)