Cargando…

人肺腺癌辐射耐受细胞株的建立及其放射抵抗机制探讨

BACKGROUND AND OBJECTIVE: Radiotherapy is one of the most common treatments for lung cancer, and about 40%-50% of patients after radiotherapy will appear uncontrolled or recurrence in the case of local tumors. Radioresistance is the predominant cause of local therapeutic failure. Nevertheless, the l...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHANG, Jingjing, MA, Shenglin, WU, Qiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial board of Chinese Journal of Lung Cancer 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033242/
https://www.ncbi.nlm.nih.gov/pubmed/36872048
http://dx.doi.org/10.3779/j.issn.1009-3419.2023.102.08
Descripción
Sumario:BACKGROUND AND OBJECTIVE: Radiotherapy is one of the most common treatments for lung cancer, and about 40%-50% of patients after radiotherapy will appear uncontrolled or recurrence in the case of local tumors. Radioresistance is the predominant cause of local therapeutic failure. Nevertheless, the lack of in vitro radioresistance models is an influential factor obstructing the study of its mechanism. Therefore, the establishment of radioresistant cell lines, H1975DR and H1299DR, was beneficial to explore the mechanism of radioresistance in lung adenocarcinoma. METHODS: The radioresistant cell lines of H1975DR and H1299DR were obtained from H1975 and H1299 cells irradiated with equal doses of X-rays; Clonogenic assays were performed to compare the clone-forming ability of H1975 vs H1975DR cells, H1299 vs H1299DR cells, then fitting cell survival curve by linear quadratic model; The comet assay was employed to examine DNA damage repair and calculate the percentage of DNA tails; The optical microscopy, CCK-8, flow cytometry, Transwell invasion assays were used to compare biological characteristics such as cell morphology, cell proliferation, apoptosis level, cycle distribution, cell migration and invasion; Western blot was carried out to measure the protein expression of DNA damage repair factors, such as DNA-PKcs, 53BP1, RAD51, and p-ATM. RESULTS: After five months of continuous irradiation and stable culture, radioresistant cell lines H1975DR and H1299DR were obtained. The cell proliferation activity, clone formation ability and DNA damage repair ability of the two radioresistant cell lines were significantly improved under X-ray irradiation. The proportion of the G(2)/M phase was markedly decreased and the proportion of the G(0)/G(1) phase was increased. Cell migration and invasion ability were significantly enhanced. Relative expression levels of p-DNA-PKcs (Ser2056), 53BP1 in the nonhomologous end-joining (NHEJ) repair pathway and p-ATM (Ser1981), RAD51 in the homologous recombination (HR) repair pathway were higher than those in H1975 and H1299. CONCLUSION: H1975 and H1299 cell lines can be able to differentiate into lung adenocarcinoma radioresistant cell lines H1975DR and H1299DR by equal dose fractional irradiation, which provided an in vitro cytological model for the study of radiotherapy resistance mechanism of lung cancer patients.