Cargando…

A deep-learning algorithm to classify skin lesions from mpox virus infection

Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identificatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Thieme, Alexander H., Zheng, Yuanning, Machiraju, Gautam, Sadee, Chris, Mittermaier, Mirja, Gertler, Maximilian, Salinas, Jorge L., Srinivasan, Krithika, Gyawali, Prashnna, Carrillo-Perez, Francisco, Capodici, Angelo, Uhlig, Maximilian, Habenicht, Daniel, Löser, Anastassia, Kohler, Maja, Schuessler, Maximilian, Kaul, David, Gollrad, Johannes, Ma, Jackie, Lippert, Christoph, Billick, Kendall, Bogoch, Isaac, Hernandez-Boussard, Tina, Geldsetzer, Pascal, Gevaert, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033450/
https://www.ncbi.nlm.nih.gov/pubmed/36864252
http://dx.doi.org/10.1038/s41591-023-02225-7
_version_ 1784910995886440448
author Thieme, Alexander H.
Zheng, Yuanning
Machiraju, Gautam
Sadee, Chris
Mittermaier, Mirja
Gertler, Maximilian
Salinas, Jorge L.
Srinivasan, Krithika
Gyawali, Prashnna
Carrillo-Perez, Francisco
Capodici, Angelo
Uhlig, Maximilian
Habenicht, Daniel
Löser, Anastassia
Kohler, Maja
Schuessler, Maximilian
Kaul, David
Gollrad, Johannes
Ma, Jackie
Lippert, Christoph
Billick, Kendall
Bogoch, Isaac
Hernandez-Boussard, Tina
Geldsetzer, Pascal
Gevaert, Olivier
author_facet Thieme, Alexander H.
Zheng, Yuanning
Machiraju, Gautam
Sadee, Chris
Mittermaier, Mirja
Gertler, Maximilian
Salinas, Jorge L.
Srinivasan, Krithika
Gyawali, Prashnna
Carrillo-Perez, Francisco
Capodici, Angelo
Uhlig, Maximilian
Habenicht, Daniel
Löser, Anastassia
Kohler, Maja
Schuessler, Maximilian
Kaul, David
Gollrad, Johannes
Ma, Jackie
Lippert, Christoph
Billick, Kendall
Bogoch, Isaac
Hernandez-Boussard, Tina
Geldsetzer, Pascal
Gevaert, Olivier
author_sort Thieme, Alexander H.
collection PubMed
description Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation.
format Online
Article
Text
id pubmed-10033450
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-100334502023-03-24 A deep-learning algorithm to classify skin lesions from mpox virus infection Thieme, Alexander H. Zheng, Yuanning Machiraju, Gautam Sadee, Chris Mittermaier, Mirja Gertler, Maximilian Salinas, Jorge L. Srinivasan, Krithika Gyawali, Prashnna Carrillo-Perez, Francisco Capodici, Angelo Uhlig, Maximilian Habenicht, Daniel Löser, Anastassia Kohler, Maja Schuessler, Maximilian Kaul, David Gollrad, Johannes Ma, Jackie Lippert, Christoph Billick, Kendall Bogoch, Isaac Hernandez-Boussard, Tina Geldsetzer, Pascal Gevaert, Olivier Nat Med Article Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation. Nature Publishing Group US 2023-03-02 2023 /pmc/articles/PMC10033450/ /pubmed/36864252 http://dx.doi.org/10.1038/s41591-023-02225-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Thieme, Alexander H.
Zheng, Yuanning
Machiraju, Gautam
Sadee, Chris
Mittermaier, Mirja
Gertler, Maximilian
Salinas, Jorge L.
Srinivasan, Krithika
Gyawali, Prashnna
Carrillo-Perez, Francisco
Capodici, Angelo
Uhlig, Maximilian
Habenicht, Daniel
Löser, Anastassia
Kohler, Maja
Schuessler, Maximilian
Kaul, David
Gollrad, Johannes
Ma, Jackie
Lippert, Christoph
Billick, Kendall
Bogoch, Isaac
Hernandez-Boussard, Tina
Geldsetzer, Pascal
Gevaert, Olivier
A deep-learning algorithm to classify skin lesions from mpox virus infection
title A deep-learning algorithm to classify skin lesions from mpox virus infection
title_full A deep-learning algorithm to classify skin lesions from mpox virus infection
title_fullStr A deep-learning algorithm to classify skin lesions from mpox virus infection
title_full_unstemmed A deep-learning algorithm to classify skin lesions from mpox virus infection
title_short A deep-learning algorithm to classify skin lesions from mpox virus infection
title_sort deep-learning algorithm to classify skin lesions from mpox virus infection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033450/
https://www.ncbi.nlm.nih.gov/pubmed/36864252
http://dx.doi.org/10.1038/s41591-023-02225-7
work_keys_str_mv AT thiemealexanderh adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT zhengyuanning adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT machirajugautam adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT sadeechris adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT mittermaiermirja adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gertlermaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT salinasjorgel adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT srinivasankrithika adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gyawaliprashnna adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT carrilloperezfrancisco adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT capodiciangelo adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT uhligmaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT habenichtdaniel adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT loseranastassia adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT kohlermaja adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT schuesslermaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT kauldavid adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gollradjohannes adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT majackie adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT lippertchristoph adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT billickkendall adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT bogochisaac adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT hernandezboussardtina adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT geldsetzerpascal adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gevaertolivier adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT thiemealexanderh deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT zhengyuanning deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT machirajugautam deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT sadeechris deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT mittermaiermirja deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gertlermaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT salinasjorgel deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT srinivasankrithika deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gyawaliprashnna deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT carrilloperezfrancisco deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT capodiciangelo deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT uhligmaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT habenichtdaniel deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT loseranastassia deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT kohlermaja deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT schuesslermaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT kauldavid deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gollradjohannes deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT majackie deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT lippertchristoph deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT billickkendall deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT bogochisaac deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT hernandezboussardtina deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT geldsetzerpascal deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
AT gevaertolivier deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection