Cargando…
A deep-learning algorithm to classify skin lesions from mpox virus infection
Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identificatio...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033450/ https://www.ncbi.nlm.nih.gov/pubmed/36864252 http://dx.doi.org/10.1038/s41591-023-02225-7 |
_version_ | 1784910995886440448 |
---|---|
author | Thieme, Alexander H. Zheng, Yuanning Machiraju, Gautam Sadee, Chris Mittermaier, Mirja Gertler, Maximilian Salinas, Jorge L. Srinivasan, Krithika Gyawali, Prashnna Carrillo-Perez, Francisco Capodici, Angelo Uhlig, Maximilian Habenicht, Daniel Löser, Anastassia Kohler, Maja Schuessler, Maximilian Kaul, David Gollrad, Johannes Ma, Jackie Lippert, Christoph Billick, Kendall Bogoch, Isaac Hernandez-Boussard, Tina Geldsetzer, Pascal Gevaert, Olivier |
author_facet | Thieme, Alexander H. Zheng, Yuanning Machiraju, Gautam Sadee, Chris Mittermaier, Mirja Gertler, Maximilian Salinas, Jorge L. Srinivasan, Krithika Gyawali, Prashnna Carrillo-Perez, Francisco Capodici, Angelo Uhlig, Maximilian Habenicht, Daniel Löser, Anastassia Kohler, Maja Schuessler, Maximilian Kaul, David Gollrad, Johannes Ma, Jackie Lippert, Christoph Billick, Kendall Bogoch, Isaac Hernandez-Boussard, Tina Geldsetzer, Pascal Gevaert, Olivier |
author_sort | Thieme, Alexander H. |
collection | PubMed |
description | Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation. |
format | Online Article Text |
id | pubmed-10033450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-100334502023-03-24 A deep-learning algorithm to classify skin lesions from mpox virus infection Thieme, Alexander H. Zheng, Yuanning Machiraju, Gautam Sadee, Chris Mittermaier, Mirja Gertler, Maximilian Salinas, Jorge L. Srinivasan, Krithika Gyawali, Prashnna Carrillo-Perez, Francisco Capodici, Angelo Uhlig, Maximilian Habenicht, Daniel Löser, Anastassia Kohler, Maja Schuessler, Maximilian Kaul, David Gollrad, Johannes Ma, Jackie Lippert, Christoph Billick, Kendall Bogoch, Isaac Hernandez-Boussard, Tina Geldsetzer, Pascal Gevaert, Olivier Nat Med Article Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation. Nature Publishing Group US 2023-03-02 2023 /pmc/articles/PMC10033450/ /pubmed/36864252 http://dx.doi.org/10.1038/s41591-023-02225-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Thieme, Alexander H. Zheng, Yuanning Machiraju, Gautam Sadee, Chris Mittermaier, Mirja Gertler, Maximilian Salinas, Jorge L. Srinivasan, Krithika Gyawali, Prashnna Carrillo-Perez, Francisco Capodici, Angelo Uhlig, Maximilian Habenicht, Daniel Löser, Anastassia Kohler, Maja Schuessler, Maximilian Kaul, David Gollrad, Johannes Ma, Jackie Lippert, Christoph Billick, Kendall Bogoch, Isaac Hernandez-Boussard, Tina Geldsetzer, Pascal Gevaert, Olivier A deep-learning algorithm to classify skin lesions from mpox virus infection |
title | A deep-learning algorithm to classify skin lesions from mpox virus infection |
title_full | A deep-learning algorithm to classify skin lesions from mpox virus infection |
title_fullStr | A deep-learning algorithm to classify skin lesions from mpox virus infection |
title_full_unstemmed | A deep-learning algorithm to classify skin lesions from mpox virus infection |
title_short | A deep-learning algorithm to classify skin lesions from mpox virus infection |
title_sort | deep-learning algorithm to classify skin lesions from mpox virus infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033450/ https://www.ncbi.nlm.nih.gov/pubmed/36864252 http://dx.doi.org/10.1038/s41591-023-02225-7 |
work_keys_str_mv | AT thiemealexanderh adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT zhengyuanning adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT machirajugautam adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT sadeechris adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT mittermaiermirja adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gertlermaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT salinasjorgel adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT srinivasankrithika adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gyawaliprashnna adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT carrilloperezfrancisco adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT capodiciangelo adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT uhligmaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT habenichtdaniel adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT loseranastassia adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT kohlermaja adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT schuesslermaximilian adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT kauldavid adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gollradjohannes adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT majackie adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT lippertchristoph adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT billickkendall adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT bogochisaac adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT hernandezboussardtina adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT geldsetzerpascal adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gevaertolivier adeeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT thiemealexanderh deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT zhengyuanning deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT machirajugautam deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT sadeechris deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT mittermaiermirja deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gertlermaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT salinasjorgel deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT srinivasankrithika deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gyawaliprashnna deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT carrilloperezfrancisco deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT capodiciangelo deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT uhligmaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT habenichtdaniel deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT loseranastassia deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT kohlermaja deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT schuesslermaximilian deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT kauldavid deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gollradjohannes deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT majackie deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT lippertchristoph deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT billickkendall deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT bogochisaac deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT hernandezboussardtina deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT geldsetzerpascal deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection AT gevaertolivier deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection |