Cargando…
Characterization of the salivary microbiome before and after antibiotic therapy via separation technique
ABSTRACT: In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033590/ https://www.ncbi.nlm.nih.gov/pubmed/36843196 http://dx.doi.org/10.1007/s00253-023-12371-0 |
_version_ | 1784911024626860032 |
---|---|
author | Pauter-Iwicka, Katarzyna Railean, Viorica Złoch, Michał Pomastowski, Paweł Szultka-Młyńska, Małgorzata Błońska, Dominika Kupczyk, Wojciech Buszewski, Bogusław |
author_facet | Pauter-Iwicka, Katarzyna Railean, Viorica Złoch, Michał Pomastowski, Paweł Szultka-Młyńska, Małgorzata Błońska, Dominika Kupczyk, Wojciech Buszewski, Bogusław |
author_sort | Pauter-Iwicka, Katarzyna |
collection | PubMed |
description | ABSTRACT: In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis—as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety. MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles. Our data can allow to monitor the treatment of bacterial diseases for patients. |
format | Online Article Text |
id | pubmed-10033590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-100335902023-03-24 Characterization of the salivary microbiome before and after antibiotic therapy via separation technique Pauter-Iwicka, Katarzyna Railean, Viorica Złoch, Michał Pomastowski, Paweł Szultka-Młyńska, Małgorzata Błońska, Dominika Kupczyk, Wojciech Buszewski, Bogusław Appl Microbiol Biotechnol Genomics, Transcriptomics, Proteomics ABSTRACT: In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis—as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety. MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles. Our data can allow to monitor the treatment of bacterial diseases for patients. Springer Berlin Heidelberg 2023-02-27 2023 /pmc/articles/PMC10033590/ /pubmed/36843196 http://dx.doi.org/10.1007/s00253-023-12371-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Genomics, Transcriptomics, Proteomics Pauter-Iwicka, Katarzyna Railean, Viorica Złoch, Michał Pomastowski, Paweł Szultka-Młyńska, Małgorzata Błońska, Dominika Kupczyk, Wojciech Buszewski, Bogusław Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title | Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title_full | Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title_fullStr | Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title_full_unstemmed | Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title_short | Characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
title_sort | characterization of the salivary microbiome before and after antibiotic therapy via separation technique |
topic | Genomics, Transcriptomics, Proteomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033590/ https://www.ncbi.nlm.nih.gov/pubmed/36843196 http://dx.doi.org/10.1007/s00253-023-12371-0 |
work_keys_str_mv | AT pauteriwickakatarzyna characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT raileanviorica characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT złochmichał characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT pomastowskipaweł characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT szultkamłynskamałgorzata characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT błonskadominika characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT kupczykwojciech characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique AT buszewskibogusław characterizationofthesalivarymicrobiomebeforeandafterantibiotictherapyviaseparationtechnique |