Cargando…
Learning to predict RNA sequence expressions from whole slide images with applications for search and classification
Deep learning methods are widely applied in digital pathology to address clinical challenges such as prognosis and diagnosis. As one of the most recent applications, deep models have also been used to extract molecular features from whole slide images. Although molecular tests carry rich information...
Autores principales: | Alsaafin, Areej, Safarpoor, Amir, Sikaroudi, Milad, Hipp, Jason D., Tizhoosh, H. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033650/ https://www.ncbi.nlm.nih.gov/pubmed/36949169 http://dx.doi.org/10.1038/s42003-023-04583-x |
Ejemplares similares
-
A self-supervised contrastive learning approach for whole slide image representation in digital pathology
por: Fashi, Parsa Ashrafi, et al.
Publicado: (2022) -
Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
por: Korbar, Bruno, et al.
Publicado: (2017) -
Transfer Learning Approach for Classification of Histopathology Whole Slide Images
por: Ahmed, Shakil, et al.
Publicado: (2021) -
Generalization of vision pre-trained models for histopathology
por: Sikaroudi, Milad, et al.
Publicado: (2023) -
Feasibility of fully automated classification of whole slide images based on deep learning
por: Cho, Kyung-Ok, et al.
Publicado: (2020)