Cargando…
CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning
Reinforcement learning (RL) has become a popular paradigm for modeling animal behavior, analyzing neuronal representations, and studying their emergence during learning. This development has been fueled by advances in understanding the role of RL in both the brain and artificial intelligence. Howeve...
Autores principales: | Diekmann, Nicolas, Vijayabaskaran, Sandhiya, Zeng, Xiangshuai, Kappel, David, Menezes, Matheus Chaves, Cheng, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033763/ https://www.ncbi.nlm.nih.gov/pubmed/36970657 http://dx.doi.org/10.3389/fninf.2023.1134405 |
Ejemplares similares
-
Navigation task and action space drive the emergence of egocentric and allocentric spatial representations
por: Vijayabaskaran, Sandhiya, et al.
Publicado: (2022) -
Context-dependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach
por: Walther, Thomas, et al.
Publicado: (2021) -
Modeling the function of episodic memory in spatial learning
por: Zeng, Xiangshuai, et al.
Publicado: (2023) -
An interpretable RL framework for pre-deployment modeling in ICU hypotension management
por: Zhang, Kristine, et al.
Publicado: (2022) -
Production of Murine Leukemia RL♂1 Rejection Antigen Peptide pRL1a by Proteolysis of Natural Precursor pRL1b
por: Ono, Toshiro, et al.
Publicado: (1996)