Cargando…
EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks
Driver fatigue detection is one of the essential tools to reduce accidents and improve traffic safety. Its main challenge lies in the problem of how to identify the driver's fatigue state accurately. Existing detection methods include yawning and blinking based on facial expressions and physiol...
Autores principales: | Gao, Dongrui, Tang, Xue, Wan, Manqing, Huang, Guo, Zhang, Yongqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033857/ https://www.ncbi.nlm.nih.gov/pubmed/36968502 http://dx.doi.org/10.3389/fnins.2023.1136609 |
Ejemplares similares
-
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification
por: Gao, Dongrui, et al.
Publicado: (2022) -
Fatigue Crack Evaluation with the Guided Wave–Convolutional Neural Network Ensemble and Differential Wavelet Spectrogram
por: Chen, Jian, et al.
Publicado: (2021) -
Multi-Input Speech Emotion Recognition Model Using Mel Spectrogram and GeMAPS
por: Toyoshima, Itsuki, et al.
Publicado: (2023) -
Automated annotation of birdsong with a neural network that segments spectrograms
por: Cohen, Yarden, et al.
Publicado: (2022)