Cargando…

Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer

Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools (www.regtools.org), a computationally efficient, free, and open-source software package designed to integrate somatic var...

Descripción completa

Detalles Bibliográficos
Autores principales: Cotto, Kelsy C., Feng, Yang-Yang, Ramu, Avinash, Richters, Megan, Freshour, Sharon L., Skidmore, Zachary L., Xia, Huiming, McMichael, Joshua F., Kunisaki, Jason, Campbell, Katie M., Chen, Timothy Hung-Po, Rozycki, Emily B., Adkins, Douglas, Devarakonda, Siddhartha, Sankararaman, Sumithra, Lin, Yiing, Chapman, William C., Maher, Christopher A., Arora, Vivek, Dunn, Gavin P., Uppaluri, Ravindra, Govindan, Ramaswamy, Griffith, Obi L., Griffith, Malachi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033906/
https://www.ncbi.nlm.nih.gov/pubmed/36949070
http://dx.doi.org/10.1038/s41467-023-37266-6
_version_ 1784911090253037568
author Cotto, Kelsy C.
Feng, Yang-Yang
Ramu, Avinash
Richters, Megan
Freshour, Sharon L.
Skidmore, Zachary L.
Xia, Huiming
McMichael, Joshua F.
Kunisaki, Jason
Campbell, Katie M.
Chen, Timothy Hung-Po
Rozycki, Emily B.
Adkins, Douglas
Devarakonda, Siddhartha
Sankararaman, Sumithra
Lin, Yiing
Chapman, William C.
Maher, Christopher A.
Arora, Vivek
Dunn, Gavin P.
Uppaluri, Ravindra
Govindan, Ramaswamy
Griffith, Obi L.
Griffith, Malachi
author_facet Cotto, Kelsy C.
Feng, Yang-Yang
Ramu, Avinash
Richters, Megan
Freshour, Sharon L.
Skidmore, Zachary L.
Xia, Huiming
McMichael, Joshua F.
Kunisaki, Jason
Campbell, Katie M.
Chen, Timothy Hung-Po
Rozycki, Emily B.
Adkins, Douglas
Devarakonda, Siddhartha
Sankararaman, Sumithra
Lin, Yiing
Chapman, William C.
Maher, Christopher A.
Arora, Vivek
Dunn, Gavin P.
Uppaluri, Ravindra
Govindan, Ramaswamy
Griffith, Obi L.
Griffith, Malachi
author_sort Cotto, Kelsy C.
collection PubMed
description Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools (www.regtools.org), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.
format Online
Article
Text
id pubmed-10033906
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100339062023-03-24 Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer Cotto, Kelsy C. Feng, Yang-Yang Ramu, Avinash Richters, Megan Freshour, Sharon L. Skidmore, Zachary L. Xia, Huiming McMichael, Joshua F. Kunisaki, Jason Campbell, Katie M. Chen, Timothy Hung-Po Rozycki, Emily B. Adkins, Douglas Devarakonda, Siddhartha Sankararaman, Sumithra Lin, Yiing Chapman, William C. Maher, Christopher A. Arora, Vivek Dunn, Gavin P. Uppaluri, Ravindra Govindan, Ramaswamy Griffith, Obi L. Griffith, Malachi Nat Commun Article Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools (www.regtools.org), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes. Nature Publishing Group UK 2023-03-22 /pmc/articles/PMC10033906/ /pubmed/36949070 http://dx.doi.org/10.1038/s41467-023-37266-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Cotto, Kelsy C.
Feng, Yang-Yang
Ramu, Avinash
Richters, Megan
Freshour, Sharon L.
Skidmore, Zachary L.
Xia, Huiming
McMichael, Joshua F.
Kunisaki, Jason
Campbell, Katie M.
Chen, Timothy Hung-Po
Rozycki, Emily B.
Adkins, Douglas
Devarakonda, Siddhartha
Sankararaman, Sumithra
Lin, Yiing
Chapman, William C.
Maher, Christopher A.
Arora, Vivek
Dunn, Gavin P.
Uppaluri, Ravindra
Govindan, Ramaswamy
Griffith, Obi L.
Griffith, Malachi
Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title_full Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title_fullStr Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title_full_unstemmed Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title_short Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
title_sort integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033906/
https://www.ncbi.nlm.nih.gov/pubmed/36949070
http://dx.doi.org/10.1038/s41467-023-37266-6
work_keys_str_mv AT cottokelsyc integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT fengyangyang integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT ramuavinash integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT richtersmegan integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT freshoursharonl integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT skidmorezacharyl integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT xiahuiming integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT mcmichaeljoshuaf integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT kunisakijason integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT campbellkatiem integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT chentimothyhungpo integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT rozyckiemilyb integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT adkinsdouglas integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT devarakondasiddhartha integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT sankararamansumithra integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT linyiing integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT chapmanwilliamc integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT maherchristophera integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT aroravivek integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT dunngavinp integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT uppaluriravindra integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT govindanramaswamy integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT griffithobil integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer
AT griffithmalachi integratedanalysisofgenomicandtranscriptomicdataforthediscoveryofspliceassociatedvariantsincancer