Cargando…

Smartphone-based point-of-care anemia screening in rural Bihar in India

BACKGROUND: The high prevalence of anemia in resource-constrained settings calls for easy-to-use, inexpensive screening tools. The Sanguina Smartphone App, an innovative tool for non-invasive hemoglobin estimation via color-sensitive, algorithm-based analysis of fingernail bed images, was validated...

Descripción completa

Detalles Bibliográficos
Autores principales: Haggenmüller, Verena, Bogler, Lisa, Weber, Ann-Charline, Kumar, Abhijeet, Bärnighausen, Till, Danquah, Ina, Vollmer, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033918/
https://www.ncbi.nlm.nih.gov/pubmed/36949164
http://dx.doi.org/10.1038/s43856-023-00267-z
Descripción
Sumario:BACKGROUND: The high prevalence of anemia in resource-constrained settings calls for easy-to-use, inexpensive screening tools. The Sanguina Smartphone App, an innovative tool for non-invasive hemoglobin estimation via color-sensitive, algorithm-based analysis of fingernail bed images, was validated in the United States. This study evaluates the performance of the App in a population with different socio-economic, ethnic, demographic and cultural composition in rural Bihar, India. METHODS: For 272 mainly adult patients of a private health centre, hemoglobin measurement with the App is compared with the gold standard laboratory blood analysis. For a second sample of 179 children attending pre-schools, hemoglobin measurement with the App is compared to the results of the HemoCue Hb 301, a point-of-care device using a small blood sample, serving as the reference standard for field-based settings. RESULTS: The App reaches ±4.43 g/dl accuracy and 0.38 g/dl bias of comparator values in the clinic-based sample, and ±3.54 g/dl and 1.30 g/dl, respectively in the pre-school sample. After retraining the algorithm with the collected data, the validity of the upgraded version is retested showing an improved performance (accuracy of ±2.25 g/dl, bias of 0.25 g/dl), corresponding to the results of the original validation study from the United States. CONCLUSIONS: The initial version of the App does not achieve the accuracy needed for diagnosis or screening. After retraining the algorithm, it achieves an accuracy sufficient for screening. The improved version with the potential for further adaptions is a promising easy-to-use, inexpensive screening tool for anemia in resource-constrained point-of-care settings.