Cargando…
Influence of nanoparticles aggregation and Lorentz force on the dynamics of water-titanium dioxide nanoparticles on a rotating surface using finite element simulation
This communication briefings the roles of Lorentz force and nanoparticles aggregation on the characteristics of water subject to Titanium dioxide rotating nanofluid flow toward a stretched surface. Due to upgrade the thermal transportation, the nanoparticles are incorporated, which are play signific...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033941/ https://www.ncbi.nlm.nih.gov/pubmed/36949222 http://dx.doi.org/10.1038/s41598-023-31771-w |
Sumario: | This communication briefings the roles of Lorentz force and nanoparticles aggregation on the characteristics of water subject to Titanium dioxide rotating nanofluid flow toward a stretched surface. Due to upgrade the thermal transportation, the nanoparticles are incorporated, which are play significance role in modern technology, electronics, and heat exchangers. The primary objective of this communication is to observe the significance of nanoparticles aggregation to enhance the host fluid thermal conductivity. In order to model our work and investigate how aggregation characteristics affect the system’s thermal conductivity, aggregation kinetics at the molecular level has been mathematically introduced. A dimensionless system of partial-differential equations is produced when the similarity transform is applied to a elaborated mathematical formulation. Thereafter, the numerical solution is obtained through a well-known computational finite element scheme via MATLAB environment. When the formulation of nanoparticle aggregation is taken into consideration, it is evident that although the magnitude of axial and transverse velocities is lower, the temperature distribution is enhanced by aggregation. |
---|