Cargando…
Neural network-derived perfusion maps: A model-free approach to computed tomography perfusion in patients with acute ischemic stroke
OBJECTIVE: In this study, we investigate whether a Convolutional Neural Network (CNN) can generate informative parametric maps from the pre-processed CT perfusion data in patients with acute ischemic stroke in a clinical setting. METHODS: The CNN training was performed on a subset of 100 pre-process...
Autores principales: | Gava, Umberto A., D’Agata, Federico, Tartaglione, Enzo, Renzulli, Riccardo, Grangetto, Marco, Bertolino, Francesca, Santonocito, Ambra, Bennink, Edwin, Vaudano, Giacomo, Boghi, Andrea, Bergui, Mauro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034033/ https://www.ncbi.nlm.nih.gov/pubmed/36970658 http://dx.doi.org/10.3389/fninf.2023.852105 |
Ejemplares similares
-
Perfusion Patterns of Ischemic Stroke on Computed Tomography Perfusion
por: Lin, Longting, et al.
Publicado: (2013) -
Emotional imagination of negative situations: Functional neuroimaging in anorexia and bulimia
por: D’Agata, Federico, et al.
Publicado: (2021) -
Effect of prolonged acquisition intervals for CT‐perfusion analysis methods in patients with ischemic stroke
por: van Ommen, Fasco, et al.
Publicado: (2019) -
Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race with Small Data
por: Tartaglione, Enzo, et al.
Publicado: (2020) -
Variation in arterial input function in a large multicenter computed tomography perfusion study
por: Peerlings, Daan, et al.
Publicado: (2021)