Cargando…

Analysis of common genetic variation across targets of microRNAs dysregulated both in ASD and epilepsy reveals negative correlation

Genetic overlap involving rare disrupting mutations may contribute to high comorbidity rates between autism spectrum disorders and epilepsy. Despite their polygenic nature, genome-wide association studies have not reported a significant contribution of common genetic variation to comorbidity between...

Descripción completa

Detalles Bibliográficos
Autores principales: Stella, Carol, Díaz-Caneja, Covadonga M., Penzol, Maria Jose, García-Alcón, Alicia, Solís, Andrea, Andreu-Bernabeu, Álvaro, Gurriarán, Xaquín, Arango, Celso, Parellada, Mara, González-Peñas, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034058/
https://www.ncbi.nlm.nih.gov/pubmed/36968597
http://dx.doi.org/10.3389/fgene.2023.1072563
Descripción
Sumario:Genetic overlap involving rare disrupting mutations may contribute to high comorbidity rates between autism spectrum disorders and epilepsy. Despite their polygenic nature, genome-wide association studies have not reported a significant contribution of common genetic variation to comorbidity between both conditions. Analysis of common genetic variation affecting specific shared pathways such as miRNA dysregulation could help to elucidate the polygenic mechanisms underlying comorbidity between autism spectrum disorders and epilepsy. We evaluated here the role of common predisposing variation to autism spectrum disorders and epilepsy across target genes of 14 miRNAs selected through bibliographic research as being dysregulated in both disorders. We considered 4,581 target genes from various in silico sources. We described negative genetic correlation between autism spectrum disorders and epilepsy across variants located within target genes of the 14 miRNAs selected (p = 0.0228). Moreover, polygenic transmission disequilibrium test on an independent cohort of autism spectrum disorders trios (N = 233) revealed an under-transmission of autism spectrum disorders predisposing alleles within miRNAs’ target genes across autism spectrum disorders trios without comorbid epilepsy, thus reinforcing the negative relationship at the common genetic variation between both traits. Our study provides evidence of a negative relationship between autism spectrum disorders and epilepsy at the common genetic variation level that becomes more evident when focusing on the miRNA regulatory networks, which contrasts with observed clinical comorbidity and results from rare variation studies. Our findings may help to conceptualize the genetic heterogeneity and the comorbidity with epilepsy in autism spectrum disorders.