Cargando…
Machine learning approaches and non-linear processing of extracted components in frontal region to predict rTMS treatment response in major depressive disorder
Predicting the therapeutic result of repetitive transcranial magnetic stimulation (rTMS) treatment could save time and costs as ineffective treatment can be avoided. To this end, we presented a machine-learning-based strategy for classifying patients with major depression disorder (MDD) into respond...
Autores principales: | Ebrahimzadeh, Elias, Fayaz, Farahnaz, Rajabion, Lila, Seraji, Masoud, Aflaki, Fatemeh, Hammoud, Ahmad, Taghizadeh, Zahra, Asgarinejad, Mostafa, Soltanian-Zadeh, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034109/ https://www.ncbi.nlm.nih.gov/pubmed/36968455 http://dx.doi.org/10.3389/fnsys.2023.919977 |
Ejemplares similares
-
Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function
por: Ebrahimzadeh, Elias, et al.
Publicado: (2022) -
Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation
por: Ebrahimzadeh, Elias, et al.
Publicado: (2021) -
Localization of Epileptic Foci Based on Simultaneous EEG–fMRI Data
por: Sadjadi, Seyyed Mostafa, et al.
Publicado: (2021) -
rTMS for Tinnitus
por: Folmer, Robert L.
Publicado: (2012) -
Improvement Of Frontal Lobe Dysfunction And White Matter Integrity By rTMS In Treatment-Resistant Depression
por: Tateishi, Hiroshi, et al.
Publicado: (2019)