Cargando…

Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data

The incidence and biochemical consequences of rare tumor subtypes are often hard to study. Fibrolamellar liver cancer (FLC) is a rare malignancy affecting adolescents and young adults. To better characterize the incidence and biochemical consequences of this disease, we combined a comprehensive anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Zack, Travis, Losert, Kurt P., Maisel, Samantha M., Wild, Jennifer, Yaqubie, Amin, Herman, Michael, Knox, Jennifer J., Mayer, Robert J., Venook, Alan P., Butte, Atul, O’Neill, Allison F., Abou-Alfa, Ghassan K., Gordan, John D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034241/
https://www.ncbi.nlm.nih.gov/pubmed/36959495
http://dx.doi.org/10.1038/s41698-023-00371-2
_version_ 1784911170015068160
author Zack, Travis
Losert, Kurt P.
Maisel, Samantha M.
Wild, Jennifer
Yaqubie, Amin
Herman, Michael
Knox, Jennifer J.
Mayer, Robert J.
Venook, Alan P.
Butte, Atul
O’Neill, Allison F.
Abou-Alfa, Ghassan K.
Gordan, John D.
author_facet Zack, Travis
Losert, Kurt P.
Maisel, Samantha M.
Wild, Jennifer
Yaqubie, Amin
Herman, Michael
Knox, Jennifer J.
Mayer, Robert J.
Venook, Alan P.
Butte, Atul
O’Neill, Allison F.
Abou-Alfa, Ghassan K.
Gordan, John D.
author_sort Zack, Travis
collection PubMed
description The incidence and biochemical consequences of rare tumor subtypes are often hard to study. Fibrolamellar liver cancer (FLC) is a rare malignancy affecting adolescents and young adults. To better characterize the incidence and biochemical consequences of this disease, we combined a comprehensive analysis of the electronic medical record and national payer data and found that FLC incidence is likely five to eight times higher than previous estimates. By employing unsupervised learning on clinical laboratory data from patients with hyperammonemia, we find that FLC-associated hyperammonemia mirrors metabolic dysregulation in urea cycle disorders. Our findings demonstrate that advanced computational analysis of rich clinical datasets can provide key clinical and biochemical insights into rare cancers.
format Online
Article
Text
id pubmed-10034241
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100342412023-03-23 Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data Zack, Travis Losert, Kurt P. Maisel, Samantha M. Wild, Jennifer Yaqubie, Amin Herman, Michael Knox, Jennifer J. Mayer, Robert J. Venook, Alan P. Butte, Atul O’Neill, Allison F. Abou-Alfa, Ghassan K. Gordan, John D. NPJ Precis Oncol Brief Communication The incidence and biochemical consequences of rare tumor subtypes are often hard to study. Fibrolamellar liver cancer (FLC) is a rare malignancy affecting adolescents and young adults. To better characterize the incidence and biochemical consequences of this disease, we combined a comprehensive analysis of the electronic medical record and national payer data and found that FLC incidence is likely five to eight times higher than previous estimates. By employing unsupervised learning on clinical laboratory data from patients with hyperammonemia, we find that FLC-associated hyperammonemia mirrors metabolic dysregulation in urea cycle disorders. Our findings demonstrate that advanced computational analysis of rich clinical datasets can provide key clinical and biochemical insights into rare cancers. Nature Publishing Group UK 2023-03-23 /pmc/articles/PMC10034241/ /pubmed/36959495 http://dx.doi.org/10.1038/s41698-023-00371-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Brief Communication
Zack, Travis
Losert, Kurt P.
Maisel, Samantha M.
Wild, Jennifer
Yaqubie, Amin
Herman, Michael
Knox, Jennifer J.
Mayer, Robert J.
Venook, Alan P.
Butte, Atul
O’Neill, Allison F.
Abou-Alfa, Ghassan K.
Gordan, John D.
Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title_full Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title_fullStr Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title_full_unstemmed Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title_short Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
title_sort defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data
topic Brief Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034241/
https://www.ncbi.nlm.nih.gov/pubmed/36959495
http://dx.doi.org/10.1038/s41698-023-00371-2
work_keys_str_mv AT zacktravis definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT losertkurtp definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT maiselsamantham definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT wildjennifer definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT yaqubieamin definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT hermanmichael definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT knoxjenniferj definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT mayerrobertj definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT venookalanp definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT butteatul definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT oneillallisonf definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT aboualfaghassank definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata
AT gordanjohnd definingincidenceandcomplicationsoffibrolamellarlivercancerthroughtieredcomputationalanalysisofclinicaldata