Cargando…
Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study
BACKGROUND: Breast cancer is the leading cause of cancer-related deaths in women. However, accurate diagnosis of breast cancer using medical images heavily relies on the experience of radiologists. This study aimed to develop an artificial intelligence model that diagnosed single-mass breast lesions...
Autores principales: | Zheng, Tiantian, Lin, Fan, Li, Xianglin, Chu, Tongpeng, Gao, Jing, Zhang, Shijie, Li, Ziyin, Gu, Yajia, Wang, Simin, Zhao, Feng, Ma, Heng, Xie, Haizhu, Xu, Cong, Zhang, Haicheng, Mao, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034267/ https://www.ncbi.nlm.nih.gov/pubmed/36969336 http://dx.doi.org/10.1016/j.eclinm.2023.101913 |
Ejemplares similares
-
Radiomic Analysis of Contrast-Enhanced Mammography With Different Image Types: Classification of Breast Lesions
por: Wang, Simin, et al.
Publicado: (2021) -
Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images
por: Fanizzi, Annarita, et al.
Publicado: (2019) -
Radiomics of contrast-enhanced spectral mammography for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer
por: Zhang, Kun, et al.
Publicado: (2023) -
Evaluation of a fully automated anatomical left atrial mapping pipeline enabled by artficial intelligence
por: Buytaert, D, et al.
Publicado: (2023) -
Identifying factors that may influence the classification performance of radiomics models using contrast-enhanced mammography (CEM) images
por: Sun, Yuqi, et al.
Publicado: (2022)