Cargando…
Identification of Prognostic Biomarkers for Breast Cancer Metastasis Using Penalized Additive Hazards Regression Model
BACKGROUND: Breast cancer (BC) has been reported as one of the most common cancers diagnosed in females throughout the world. Survival rate of BC patients is affected by metastasis. So, exploring its underlying mechanisms and identifying related biomarkers to monitor BC relapse/recurrence using new...
Autores principales: | Tapak, Leili, Hamidi, Omid, Amini, Payam, Afshar, Saeid, Salimy, Siamak, Dinu, Irina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034277/ https://www.ncbi.nlm.nih.gov/pubmed/36968522 http://dx.doi.org/10.1177/11769351231157942 |
Ejemplares similares
-
Introducing novel key genes and transcription factors associated with rectal cancer response to chemoradiation through co-expression network analysis
por: Afshar, Saeid, et al.
Publicado: (2023) -
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data
por: Tapak, Leili, et al.
Publicado: (2021) -
High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study
por: Hamidi, Omid, et al.
Publicado: (2014) -
Prediction of Kidney Graft Rejection Using Artificial Neural Network
por: Tapak, Leili, et al.
Publicado: (2017) -
Psoriasis Associated Hub Genes Revealed by Weighted Gene
Co-Expression Network Analysis
por: Darvish, Zeinab, et al.
Publicado: (2023)