Cargando…
Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm
OBJECTIVE: To develop the extreme gradient boosting (XG Boost) machine learning (ML) model for predicting gestational diabetes mellitus (GDM) compared with a model using the traditional logistic regression (LR) method. METHODS: A case–control study was carried out among pregnant women, who were assi...
Autores principales: | Hu, Xiaoqi, Hu, Xiaolin, Yu, Ya, Wang, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034315/ https://www.ncbi.nlm.nih.gov/pubmed/36967760 http://dx.doi.org/10.3389/fendo.2023.1105062 |
Ejemplares similares
-
A Novel Nomogram for Predicting Gestational Diabetes Mellitus During Early Pregnancy
por: Kang, Mei, et al.
Publicado: (2021) -
Exosomal RNA Expression Profiles and Their Prediction Performance in Patients With Gestational Diabetes Mellitus and Macrosomia
por: Yuan, Yingdi, et al.
Publicado: (2022) -
Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
por: Kang, Byung Soo, et al.
Publicado: (2023) -
Optimized Xception Learning Model and XgBoost Classifier for Detection of Multiclass Chest Disease from X-ray Images
por: Shaheed, Kashif, et al.
Publicado: (2023) -
Dynamic changes and early predictive value of branched-chain amino acids in gestational diabetes mellitus during pregnancy
por: Wang, Xiaoxin, et al.
Publicado: (2022)