Cargando…
Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging li...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034362/ https://www.ncbi.nlm.nih.gov/pubmed/36968397 http://dx.doi.org/10.3389/fpls.2023.1116367 |
_version_ | 1784911201773289472 |
---|---|
author | Burgess, Alexandra J. Retkute, Renata Murchie, Erik H. |
author_facet | Burgess, Alexandra J. Retkute, Renata Murchie, Erik H. |
author_sort | Burgess, Alexandra J. |
collection | PubMed |
description | Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of ‘entrainment’ of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement. |
format | Online Article Text |
id | pubmed-10034362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100343622023-03-24 Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana Burgess, Alexandra J. Retkute, Renata Murchie, Erik H. Front Plant Sci Plant Science Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of ‘entrainment’ of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement. Frontiers Media S.A. 2023-03-09 /pmc/articles/PMC10034362/ /pubmed/36968397 http://dx.doi.org/10.3389/fpls.2023.1116367 Text en Copyright © 2023 Burgess, Retkute and Murchie https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Burgess, Alexandra J. Retkute, Renata Murchie, Erik H. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana |
title | Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
|
title_full | Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
|
title_fullStr | Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
|
title_full_unstemmed | Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
|
title_short | Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana
|
title_sort | photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in arabidopsis thaliana |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034362/ https://www.ncbi.nlm.nih.gov/pubmed/36968397 http://dx.doi.org/10.3389/fpls.2023.1116367 |
work_keys_str_mv | AT burgessalexandraj photoacclimationandentrainmentofphotosynthesisbyfluctuatinglightvariesaccordingtogenotypeinarabidopsisthaliana AT retkuterenata photoacclimationandentrainmentofphotosynthesisbyfluctuatinglightvariesaccordingtogenotypeinarabidopsisthaliana AT murchieerikh photoacclimationandentrainmentofphotosynthesisbyfluctuatinglightvariesaccordingtogenotypeinarabidopsisthaliana |