Cargando…

Microstructured click hydrogels for cell contact guidance in 3D

The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made...

Descripción completa

Detalles Bibliográficos
Autores principales: Neves, Mariana I., Bidarra, Sílvia J., Magalhães, Mariana V., Torres, Ana L., Moroni, Lorenzo, Barrias, Cristina C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034521/
https://www.ncbi.nlm.nih.gov/pubmed/36969695
http://dx.doi.org/10.1016/j.mtbio.2023.100604
_version_ 1784911240243445760
author Neves, Mariana I.
Bidarra, Sílvia J.
Magalhães, Mariana V.
Torres, Ana L.
Moroni, Lorenzo
Barrias, Cristina C.
author_facet Neves, Mariana I.
Bidarra, Sílvia J.
Magalhães, Mariana V.
Torres, Ana L.
Moroni, Lorenzo
Barrias, Cristina C.
author_sort Neves, Mariana I.
collection PubMed
description The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-K(H) hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration.
format Online
Article
Text
id pubmed-10034521
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100345212023-03-24 Microstructured click hydrogels for cell contact guidance in 3D Neves, Mariana I. Bidarra, Sílvia J. Magalhães, Mariana V. Torres, Ana L. Moroni, Lorenzo Barrias, Cristina C. Mater Today Bio Full Length Article The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-K(H) hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration. Elsevier 2023-03-10 /pmc/articles/PMC10034521/ /pubmed/36969695 http://dx.doi.org/10.1016/j.mtbio.2023.100604 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Full Length Article
Neves, Mariana I.
Bidarra, Sílvia J.
Magalhães, Mariana V.
Torres, Ana L.
Moroni, Lorenzo
Barrias, Cristina C.
Microstructured click hydrogels for cell contact guidance in 3D
title Microstructured click hydrogels for cell contact guidance in 3D
title_full Microstructured click hydrogels for cell contact guidance in 3D
title_fullStr Microstructured click hydrogels for cell contact guidance in 3D
title_full_unstemmed Microstructured click hydrogels for cell contact guidance in 3D
title_short Microstructured click hydrogels for cell contact guidance in 3D
title_sort microstructured click hydrogels for cell contact guidance in 3d
topic Full Length Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034521/
https://www.ncbi.nlm.nih.gov/pubmed/36969695
http://dx.doi.org/10.1016/j.mtbio.2023.100604
work_keys_str_mv AT nevesmarianai microstructuredclickhydrogelsforcellcontactguidancein3d
AT bidarrasilviaj microstructuredclickhydrogelsforcellcontactguidancein3d
AT magalhaesmarianav microstructuredclickhydrogelsforcellcontactguidancein3d
AT torresanal microstructuredclickhydrogelsforcellcontactguidancein3d
AT moronilorenzo microstructuredclickhydrogelsforcellcontactguidancein3d
AT barriascristinac microstructuredclickhydrogelsforcellcontactguidancein3d