Cargando…
A library of sensitive position-specific scoring matrices for high-throughput identification of nuclear pore complex subunits
The nuclear pore complex exhibits different manifestations across eukaryotes, with certain components being restricted to specific clades. Several studies have been conducted to delineate the nuclear pore complex composition in various model organisms. Due to its pivotal role in cell viability, trad...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034585/ https://www.ncbi.nlm.nih.gov/pubmed/36968432 http://dx.doi.org/10.1093/nargab/lqad025 |
Sumario: | The nuclear pore complex exhibits different manifestations across eukaryotes, with certain components being restricted to specific clades. Several studies have been conducted to delineate the nuclear pore complex composition in various model organisms. Due to its pivotal role in cell viability, traditional lab experiments, such as gene knockdowns, can prove inconclusive and need to be complemented by a high-quality computational process. Here, using an extensive data collection, we create a robust library of nucleoporin protein sequences and their respective family-specific position-specific scoring matrices. By extensively validating each profile in different settings, we propose that the created profiles can be used to detect nucleoporins in proteomes with high sensitivity and specificity compared to existing methods. This library of profiles and the underlying sequence data can be used for the detection of nucleoporins in target proteomes. |
---|