Cargando…
Visualising data science workflows to support third-party notebook comprehension: an empirical study
Data science is an exploratory and iterative process that often leads to complex and unstructured code. This code is usually poorly documented and, consequently, hard to understand by a third party. In this paper, we first collect empirical evidence for the non-linearity of data science code from re...
Autores principales: | Ramasamy, Dhivyabharathi, Sarasua, Cristina, Bacchelli, Alberto, Bernstein, Abraham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034906/ https://www.ncbi.nlm.nih.gov/pubmed/36968214 http://dx.doi.org/10.1007/s10664-023-10289-9 |
Ejemplares similares
-
Workflow analysis of data science code in public GitHub repositories
por: Ramasamy, Dhivyabharathi, et al.
Publicado: (2022) -
Optimising JS visualisation for notebooks
por: She, Harry
Publicado: (2017) -
Science notebook
por: Calder, N
Publicado: (1962) -
Nonlinear science: an interactive Mathematica notebook
por: Campbell, David K, et al.
Publicado: (2012) -
Third-party reproductive practices: legislative inertia and the need for nuanced empirical data
por: Markens, Susan
Publicado: (2016)