Cargando…

DNA G-Quadruplex-Binding Protein Developed Using the RGG Domain of Translocated in Liposarcoma/Fused in Sarcoma Inhibits Transcription of bcl-2

[Image: see text] The G-quadruplexes (G4s) in the genome are important drug targets because they regulate gene expression and the genome structure. Several small molecules that bind the G4 have been developed, but few artificial G4 binding proteins have been reported. We previously reported a novel...

Descripción completa

Detalles Bibliográficos
Autores principales: Ulum, Luthfi Lulul, Karikome, Yamato, Yagi, Ryota, Kawashima, Tomoe, Ishihara, Akinori, Oyoshi, Takanori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035022/
https://www.ncbi.nlm.nih.gov/pubmed/36969440
http://dx.doi.org/10.1021/acsomega.3c00050
Descripción
Sumario:[Image: see text] The G-quadruplexes (G4s) in the genome are important drug targets because they regulate gene expression and the genome structure. Several small molecules that bind the G4 have been developed, but few artificial G4 binding proteins have been reported. We previously reported a novel DNA G4 binding protein (RGGF) engineered using the Arg-Gly-Gly repeat (RGG) domain of TLS (translocated in liposarcoma), also known as FUS (fused in sarcoma) protein (TLS/FUS). Here, we show that RGGF recognizes DNA loops in the G4 and preferentially binds DNA G4 with long loops in vitro. Furthermore, RGGF binds to the DNA G4 of the bcl-2 promoter in vitro. RGGF overexpression in HeLa cells represses bcl-2 transcription. On the basis of these findings, G4 binding protein engineered from the RGG domain will be useful for investigating G4 transcriptional function in the genome.