Cargando…
Motor imagery EEG signal classification with a multivariate time series approach
BACKGROUND: Electroencephalogram (EEG) signals record electrical activity on the scalp. Measured signals, especially EEG motor imagery signals, are often inconsistent or distorted, which compromises their classification accuracy. Achieving a reliable classification of motor imagery EEG signals opens...
Autores principales: | Velasco, I., Sipols, A., De Blas, C. Simon, Pastor, L., Bayona, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035287/ https://www.ncbi.nlm.nih.gov/pubmed/36959601 http://dx.doi.org/10.1186/s12938-023-01079-x |
Ejemplares similares
-
Motor Imagery EEG Classification Using Capsule Networks†
por: Ha, Kwon-Woo, et al.
Publicado: (2019) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method
por: Batres-Mendoza, Patricia, et al.
Publicado: (2017) -
An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
por: Kumar, Shiu, et al.
Publicado: (2017)